We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The universe we live in is both strange and interesting. This strangeness comes about because, at the most fundamental level, the universe is governed by the laws of quantum mechanics. This is the most spectacularly accurate and powerful theory ever devised, one that has given us insights into many aspects of the world, from the structure of matter to the meaning of information. This textbook provides a comprehensive account of all things quantum. It starts by introducing the wavefunction and its interpretation as an ephemeral wave of complex probability, before delving into the mathematical formalism of quantum mechanics and exploring its diverse applications, from atomic physics and scattering, to quantum computing. Designed to be accessible, this volume is suitable for both students and researchers, beginning with the basics before progressing to more advanced topics.
There are four forces in our universe. Two act only at the very smallest scales and one only at the very biggest. For everything inbetween, there is electromagnetism. The theory of electromagnetism is described by four gloriously simple and beautiful vector calculus equations known as the Maxwell equations. These are the first genuinely fundamental equations that we meet in our physics education and they survive, essentially unchanged, in our best modern theories of physics. They also serve as a blueprint for what subsequent laws of physics look like. This textbook takes us on a tour of the Maxwell equations and their many solutions. It starts with the basics of electric and magnetic phenomena and explains how their unification results in waves that we call light. It then describes more advanced topics such as superconductors, monopoles, radiation, and electromagnetism in matter. The book concludes with a detailed review of the mathematics of vector calculus.
Any education in theoretical physics begins with the laws of classical mechanics. The basics of the subject were laid down long ago by Galileo and Newton and are enshrined in the famous equation F=ma that we all learn in school. But there is much more to the subject and, in the intervening centuries, the laws of classical mechanics were reformulated to emphasis deeper concepts such as energy, symmetry, and action. This textbook describes these different approaches to classical mechanics, starting with Newton's laws before turning to subsequent developments such as the Lagrangian and Hamiltonian approaches. The book emphasises Noether's profound insights into symmetries and conservation laws, as well as Einstein's vision of spacetime, encapsulated in the theory of special relativity. Classical mechanics is not the last word on theoretical physics. But it is the foundation for all that follows. The purpose of this book is to provide this foundation.
Take anything in the universe, put it in a box, and heat it up. Regardless of what you start with, the motion of the substance will be described by the equations of fluid mechanics. This remarkable universality is the reason why fluid mechanics is important. The key equation of fluid mechanics is the Navier-Stokes equation. This textbook starts with the basics of fluid flows, building to the Navier-Stokes equation while explaining the physics behind the various terms and exploring the astonishingly rich landscape of solutions. The book then progresses to more advanced topics, including waves, fluid instabilities, and turbulence, before concluding by turning inwards and describing the atomic constituents of fluids. It introduces ideas of kinetic theory, including the Boltzmann equation, to explain why the collective motion of 1023 atoms is, under the right circumstances, always governed by the laws of fluid mechanics.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.