To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Laura M. Chalk (later, Laura Rowles, 1904−1996) was the first woman to complete a PhD in physics at McGill University in Montreal, Canada. Her doctoral research on the quantum phenomenon called the Stark effect, under the supervision of J. Stuart Foster, produced the earliest experimental test of Erwin Schrödinger’s wave mechanics. After a brief stint as a postdoctoral fellow at King’s College London, she chose to return home and dedicate herself to teaching and marriage. This paper aims to fully recover Chalk’s work and explore why the Foster−Chalk experiment was overlooked in physics historiography. It considers the Stark effect’s significance in quantum physics and the impact of gender on her personal trajectory. Shaped by personal choice, systemic discrimination, and acceptance of societal norms, Chalk Rowles’ story highlights the paradoxes faced by women in a culturally disembodied yet male-dominated field, and reflects broader themes of gender and identity in the history of women in physics.
After some historical perspective on the subject, the introduction attempts to define, distinguish, and link in the broadest terms the various areas of physics related to fluid dynamics. These include fluid mechanics, hydrodynamics, gas dynamics, magnetohydrodynamics, and plasma physics. In particular, the link between ordinary hydrodynamics and magnetohydro-dynamics is made, and the approach this text takes in teaching both, namely wave mechanics, is revealed.
This text introduces readers to magnetohydrodynamics (MHD), the physics of ionised fluids. Traditionally MHD is taught as part of a graduate curriculum in plasma physics. By contrast, this text - one of a very few - teaches MHD exclusively from a fluid dynamics perspective, making it uniquely accessible to senior undergraduate students. Part I of the text uses the MHD Riemann problem as a focus to introduce the fundamentals of MHD: Alfvén's theorem; waves; shocks; rarefaction fans; etc. Part II builds upon this with presentations of broader areas of MHD: fluid instabilities; viscid hydrodynamics; steady-state MHD; and non-ideal MHD. Throughout the text, more than 125 problems and several projects (with solutions available to instructors) reinforce the main ideas. Optionally, large-font lesson plans for a 'flipped-style' class are also available to instructors. This book is suitable for advanced undergraduate and beginning graduate students, requiring no previous knowledge of fluid dynamics or plasma physics.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.