We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter elucidates the physical and chemical mechanisms involved in the formation of planets, the conventional abodes of life. The first part is devoted to protoplanetary discs, wherein planet formation unfolds. The topics covered include the minimum mass required for assembling the solar system (minimum mass solar nebula), the thermal and density structure of protoplanetary discs, and the rich chemistry that occurs in these settings. The second delves into the many stages of planet formation starting from the coagulation of dust to the hurdles encountered (e.g., metre barrier) in forming kilometre-sized planetesimals and subsequently to collisions between planetesimals engendering planetary cores and eventually terrestrial planets; a brief description of how giant planets are assembled is also delineated. The final part outlines how interactions between a given planet and its neighbouring gas or planetesimals can contribute to the migration of the former, as well as influence the delivery of water and other volatiles to the planet.
Earth’s Moon is quite distinct from other moons in the solar system, in being a comparable size to Earth. We explore the theory that a giant impact in the chaotic early solar system led to the Moon’s formation, and bombardment by ice-laden asteroids provided the abundant water we find on our planet. Further, we find that Earth’s magnetic field shields us from solar wind protons, that protect our atmosphere from being stripped away. The icy moons of Jupiter and Saturn are the best targets for exploring if life exists elsewhere in the solar system.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.