We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A Fano variety is defined by the ampleness of the anti-canonical divisor. Kollár, Miyaoka and Mori proved that Fano varieties of fixed dimension form a bounded family. In the singular case, Birkar settled the boundedness known as the Borisov-Alexeev-Borisov conjecture. The general elephant conjecture holds for Gorenstein Fano threefolds thanks to Shokurov and Reid. Without the Gorenstein condition, there exist counter-examples. Iskovskikh established a classification of Fano threefolds with Picard number one. His approach is founded upon the work of Fano, who studied an anti-canonically embedded Fano threefold by projecting it doubly from a line. Mukai provided a biregular description by means of vector bundles. There exist 95 families of terminal Q-Fano threefold weighted hypersurfaces. Corti, Pukhlikov and Reid concluded that a general Q-Fano threefold in each of these families is birationally rigid. Finally we describe the relation between birational rigidity and K-stability. The K-stability was introduced for the problem of the existence of a Kähler-Einstein metric. If a Q-Fano threefold in one of the 95 families is birationally superrigid, then it is K-stable.
We show that the Hilbert bimodule associated with a compact topological graph can be recovered from the $C^*$-algebraic triple consisting of the Toeplitz algebra of the graph, its gauge action and the commutative subalgebra of functions on the vertex space of the graph. We discuss connections with work of Davidson–Katsoulis and of Davidson–Roydor on local conjugacy of topological graphs and isomorphism of their tensor algebras. In particular, we give a direct proof that a compact topological graph can be recovered up to local conjugacy from its Hilbert bimodule, and present an example of nonisomorphic locally conjugate compact topological graphs with isomorphic Hilbert bimodules. We also give an elementary proof that for compact topological graphs with totally disconnected vertex space the notions of local conjugacy, Hilbert bimodule isomorphism, isomorphism of $C^*$-algebraic triples, and isomorphism all coincide.
This paper concerns extension of maps using obstruction theory under a non-classical viewpoint. It is given a classification of homotopy classes of maps and as an application it is presented a simple proof of a theorem by Adachi about equivalence of vector bundles. Also it is proved that, under certain conditions, two embeddings are homotopic up to surgery if and only if the respective normal bundles are SO-equivalent.
Let $X$ be a smooth projective curve of genus $g\geq 2$ over an algebraically closed field $k$ of characteristic $p>0$. We show that for any integers $r$ and $d$ with $0<r<p$, there exists a maximally Frobenius destabilised stable vector bundle of rank $r$ and degree $d$ on $X$ if and only if $r\mid d$.
We calculate the dimension of cohomology groups for the holomorphic tangent bundles of each isomorphism class of the projective plane bundle over an elliptic curve. As an application, we construct the families of projective plane bundles, and prove that the families are effectively parametrized and complete.
We introduce a weaker notion of (semi)stability for vector bundles on reducible curves that does not depend on a choice of polarization and suffices for many applications of degeneration techniques. We explore the basic properties of this alternate notion of (semi)stability. In a complementary direction, we record a proof of the existence of semistable extensions of vector bundles in suitable degenerations.
Let $S\subseteq \mathbb{P}^{d}$ be an anticanonically embedded surface of degree $d\geq 3$. In this note, we classify stable Ulrich bundles on $S$ of rank two. We also study their moduli spaces.
We prove that for every ordinary genus-2 curve $X$ over a finite field $\kappa$ of characteristic 2 with $\text{Aut}\left( X/\kappa \right)\,=\,\mathbb{Z}/2\mathbb{Z}\,\times \,{{S}_{3}}$ there exist $\text{SL}\left( 2,\,\kappa \left[\!\left[ s \right]\!\right] \right)$-representations of ${{\pi }_{1}}\left( X \right)$ such that the image of ${{\pi }_{1}}\left( \overline{X} \right)$ is infinite. This result produces a family of examples similar to Y. Laszlo’s counterexample to A. J. de Jong’s question regarding the finiteness of the geometric monodromy of representations of the fundamental group.
Let A be a unital C*-algebra with the canonical (H) C*-bundle over the maximal ideal space of the centre of A, and let E(A) be the set of all elementary operators on A. We consider derivations on A which lie in the completely bounded norm closure of E(A), and show that such derivations are necessarily inner in the case when each fibre of is a prime C*-algebra. We also consider separable C*-algebras A for which is an (F) bundle. For these C*-algebras we show that the following conditions are equivalent: E(A) is closed in the operator norm; A as a Banach module over its centre is topologically finitely generated; fibres of have uniformly finite dimensions, and each restriction bundle of over a set where its fibres are of constant dimension is of finite type as a vector bundle.
We define a new functional which is gauge invariant on the space of all smooth connections of a vector bundle over a compact Riemannian manifold. This functional is a generalization of the classical Yang-Mills functional. We derive its first variation formula and prove the existence of critical points. We also obtain the second variation formula.
In this paper, we consider Yang-Mills connections on a vector bundle $E$ over a compact Riemannian manifold $M$ of dimension $m\,>\,4$, and we show that any set of Yang-Mills connections with the uniformly bounded ${{L}^{\frac{m}{2}}}$-norm of curvature is compact in ${{C}^{\infty }}$ topology.
I give the necessary and sufficient conditions for the existence of Unitary local systems with prescribed local monodromies on $\mathbb P$1 − S where S is a finite set. This is used to give an algorithm to decide if a rigid local system on $\mathbb P$1 − S has finite global monodromy, thereby answering a question of N. Katz. The methods of this article (use of Harder–Narasimhan filtrations) are used to strengthen Klyachko's theorem on sums of Hermitian matrices. In the Appendix, I give a reformulation of Mehta–Seshadri theorem in the SU(n) setting.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.