We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
With the increase of access point (AP) density and the exponential growth of mobile devices supported by ultra dense networks (UDNs), overlapped user-centric (UC) clustering is becoming a promising design principle for guaranteeing the quality of service (QoS) required by each UE. However, the overlapped UC clustering has to be jointly designed with resource allocation in UDNs. In this context, both the traffic-load balancing and the limited availability of orthogonal resource blocks (RBs) are carefully considered in UDNs. To tackle these challenges, we formulate a joint overlapped UC clustering and resource allocation problem with the goal of maximizing the system’s spectral efficiency (SE). With the aid of the graph-theoretical framework, the problem is decoupled into two independent subproblems, and a distributed overlapped UC clustering solution as well as a graph-based resource allocation scheme were proposed. Our numerical results quantify the superior performance of the proposed framework in terms of both its per area aggregated user rate (PAAR) and user rate.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.