We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let ${{\mathcal{H}}_{n}}$ be the real linear space of $n\,\times \,n$ complex Hermitian matrices. The unitary (similarity) orbit $\mathcal{U}\left( C \right)$ of $C\,\in \,{{\mathcal{H}}_{n}}$ is the collection of all matrices unitarily similar to $C$. We characterize those $C\,\in \,{{\mathcal{H}}_{n}}$ such that every matrix in the convex hull of $\mathcal{U}\left( C \right)$ can be written as the average of two matrices in $\mathcal{U}\left( C \right)$. The result is used to study spectral properties of submatrices of matrices in $\mathcal{U}\left( C \right)$, the convexity of images of $\mathcal{U}\left( C \right)$ under linear transformations, and some related questions concerning the joint $C$-numerical range of Hermitian matrices. Analogous results on real symmetric matrices are also discussed.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.