We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The study of finite approximations of probability measures has a long history. In Xu and Berger (2017), the authors focused on constrained finite approximations and, in particular, uniform ones in dimension d=1. In the present paper we give an elementary construction of a uniform decomposition of probability measures in dimension d≥1. We then use this decomposition to obtain upper bounds on the rate of convergence of the optimal uniform approximation error. These bounds appear to be the generalization of the ones obtained by Xu and Berger (2017) and to be sharp for generic probability measures.
In this paper, we construct two classes of rational function operators using the Poisson integrals of the function on the whole real axis. The convergence rates of the uniform and mean approximation of such rational function operators on the whole real axis are studied.
We consider a nearly unstable, or near unit root, AR(1) process with regularly varying innovations. Two different approximations for the stationary distribution of such processes exist: a Gaussian approximation arising from the nearly unstable nature of the process and a heavy-tail approximation related to the tail asymptotics of the innovations. We combine these two approximations to obtain a new uniform approximation that is valid on the entire real line. As a corollary, we obtain a precise description of the regions where each of the Gaussian and heavy-tail approximations should be used.
We prove that each (vector-valued) function in Sobolev space on a compact set K, which in the interior K0 of K satisfies a system of differential equations, can be approximated by solutions in a neighbourhood of K plus sums of potentials of measures supported on the boundary of K. We discuss the particular case where, for all compact sets K, one can dispense with potentials in such approximations
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.