The aim of this paper is to study the heat kernel and the jump kernel of the Dirichlet form associated to the ultrametric Cantor set  $\unicode[STIX]{x2202}{\mathcal{B}}_{\unicode[STIX]{x1D6EC}}$ that is the infinite path space of the stationary
$\unicode[STIX]{x2202}{\mathcal{B}}_{\unicode[STIX]{x1D6EC}}$ that is the infinite path space of the stationary  $k$-Bratteli diagram
$k$-Bratteli diagram  ${\mathcal{B}}_{\unicode[STIX]{x1D6EC}}$, where
${\mathcal{B}}_{\unicode[STIX]{x1D6EC}}$, where  $\unicode[STIX]{x1D6EC}$ is a finite strongly connected
$\unicode[STIX]{x1D6EC}$ is a finite strongly connected  $k$-graph. The Dirichlet form which we are interested in is induced by an even spectral triple
$k$-graph. The Dirichlet form which we are interested in is induced by an even spectral triple  $(C_{\operatorname{Lip}}(\unicode[STIX]{x2202}{\mathcal{B}}_{\unicode[STIX]{x1D6EC}}),\unicode[STIX]{x1D70B}_{\unicode[STIX]{x1D719}},{\mathcal{H}},D,\unicode[STIX]{x1D6E4})$ and is given by
$(C_{\operatorname{Lip}}(\unicode[STIX]{x2202}{\mathcal{B}}_{\unicode[STIX]{x1D6EC}}),\unicode[STIX]{x1D70B}_{\unicode[STIX]{x1D719}},{\mathcal{H}},D,\unicode[STIX]{x1D6E4})$ and is given by  $$\begin{eqnarray}Q_{s}(f,g)=\frac{1}{2}\int _{\unicode[STIX]{x1D6EF}}\operatorname{Tr}(|D|^{-s}[D,\unicode[STIX]{x1D70B}_{\unicode[STIX]{x1D719}}(f)]^{\ast }[D,\unicode[STIX]{x1D70B}_{\unicode[STIX]{x1D719}}(g)])\,d\unicode[STIX]{x1D708}(\unicode[STIX]{x1D719}),\end{eqnarray}$$
$$\begin{eqnarray}Q_{s}(f,g)=\frac{1}{2}\int _{\unicode[STIX]{x1D6EF}}\operatorname{Tr}(|D|^{-s}[D,\unicode[STIX]{x1D70B}_{\unicode[STIX]{x1D719}}(f)]^{\ast }[D,\unicode[STIX]{x1D70B}_{\unicode[STIX]{x1D719}}(g)])\,d\unicode[STIX]{x1D708}(\unicode[STIX]{x1D719}),\end{eqnarray}$$ $\unicode[STIX]{x1D6EF}$ is the space of choice functions on
$\unicode[STIX]{x1D6EF}$ is the space of choice functions on  $\unicode[STIX]{x2202}{\mathcal{B}}_{\unicode[STIX]{x1D6EC}}\times \unicode[STIX]{x2202}{\mathcal{B}}_{\unicode[STIX]{x1D6EC}}$. There are two ultrametrics,
$\unicode[STIX]{x2202}{\mathcal{B}}_{\unicode[STIX]{x1D6EC}}\times \unicode[STIX]{x2202}{\mathcal{B}}_{\unicode[STIX]{x1D6EC}}$. There are two ultrametrics,  $d^{(s)}$ and
$d^{(s)}$ and  $d_{w_{\unicode[STIX]{x1D6FF}}}$, on
$d_{w_{\unicode[STIX]{x1D6FF}}}$, on  $\unicode[STIX]{x2202}{\mathcal{B}}_{\unicode[STIX]{x1D6EC}}$ which make the infinite path space
$\unicode[STIX]{x2202}{\mathcal{B}}_{\unicode[STIX]{x1D6EC}}$ which make the infinite path space  $\unicode[STIX]{x2202}{\mathcal{B}}_{\unicode[STIX]{x1D6EC}}$ an ultrametric Cantor set. The former
$\unicode[STIX]{x2202}{\mathcal{B}}_{\unicode[STIX]{x1D6EC}}$ an ultrametric Cantor set. The former  $d^{(s)}$ is associated to the eigenvalues of the Laplace–Beltrami operator
$d^{(s)}$ is associated to the eigenvalues of the Laplace–Beltrami operator  $\unicode[STIX]{x1D6E5}_{s}$ associated to
$\unicode[STIX]{x1D6E5}_{s}$ associated to  $Q_{s}$, and the latter
$Q_{s}$, and the latter  $d_{w_{\unicode[STIX]{x1D6FF}}}$ is associated to a weight function
$d_{w_{\unicode[STIX]{x1D6FF}}}$ is associated to a weight function  $w_{\unicode[STIX]{x1D6FF}}$ on
$w_{\unicode[STIX]{x1D6FF}}$ on  ${\mathcal{B}}_{\unicode[STIX]{x1D6EC}}$, where
${\mathcal{B}}_{\unicode[STIX]{x1D6EC}}$, where  $\unicode[STIX]{x1D6FF}\in (0,1)$. We show that the Perron–Frobenius measure
$\unicode[STIX]{x1D6FF}\in (0,1)$. We show that the Perron–Frobenius measure  $\unicode[STIX]{x1D707}$ on
$\unicode[STIX]{x1D707}$ on  $\unicode[STIX]{x2202}{\mathcal{B}}_{\unicode[STIX]{x1D6EC}}$ has the volume-doubling property with respect to both
$\unicode[STIX]{x2202}{\mathcal{B}}_{\unicode[STIX]{x1D6EC}}$ has the volume-doubling property with respect to both  $d^{(s)}$ and
$d^{(s)}$ and  $d_{w_{\unicode[STIX]{x1D6FF}}}$ and we study the asymptotic behavior of the heat kernel associated to
$d_{w_{\unicode[STIX]{x1D6FF}}}$ and we study the asymptotic behavior of the heat kernel associated to  $Q_{s}$. Moreover, we show that the Dirichlet form
$Q_{s}$. Moreover, we show that the Dirichlet form  $Q_{s}$ coincides with a Dirichlet form
$Q_{s}$ coincides with a Dirichlet form  ${\mathcal{Q}}_{J_{s},\unicode[STIX]{x1D707}}$ which is associated to a jump kernel
${\mathcal{Q}}_{J_{s},\unicode[STIX]{x1D707}}$ which is associated to a jump kernel  $J_{s}$ and the measure
$J_{s}$ and the measure  $\unicode[STIX]{x1D707}$ on
$\unicode[STIX]{x1D707}$ on  $\unicode[STIX]{x2202}{\mathcal{B}}_{\unicode[STIX]{x1D6EC}}$, and we investigate the asymptotic behavior and moments of displacements of the process.
$\unicode[STIX]{x2202}{\mathcal{B}}_{\unicode[STIX]{x1D6EC}}$, and we investigate the asymptotic behavior and moments of displacements of the process.