We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider families of Siegel eigenforms of genus $2$ and finite slope, defined as local pieces of an eigenvariety and equipped with a suitable integral structure. Under some assumptions on the residual image, we show that the image of the Galois representation associated with a family is big, in the sense that a Lie algebra attached to it contains a congruence subalgebra of non-zero level. We call the Galois level of the family the largest such level. We show that it is trivial when the residual representation has full image. When the residual representation is a symmetric cube, the zero locus defined by the Galois level of the family admits an automorphic description: it is the locus of points that arise from overconvergent eigenforms for $\operatorname{GL}_{2}$, via a $p$-adic Langlands lift attached to the symmetric cube representation. Our proof goes via the comparison of the Galois level with a ‘fortuitous’ congruence ideal. Some of the $p$-adic lifts are interpolated by a morphism of rigid analytic spaces from an eigencurve for $\operatorname{GL}_{2}$ to an eigenvariety for $\operatorname{GSp}_{4}$, while the remainder appear as isolated points on the eigenvariety.
We study the $p$-adic variation of triangulations over $p$-adic families of $(\unicode[STIX]{x1D711},\unicode[STIX]{x1D6E4})$-modules. In particular, we study certain canonical sub-filtrations of the pointwise triangulations and show that they extend to affinoid neighborhoods of crystalline points. This generalizes results of Kedlaya, Pottharst and Xiao and (independently) Liu in the case where one expects the entire triangulation to extend. We also study the ramification of weight parameters over natural $p$-adic families.
The aim of this article is to classify two-dimensional split trianguline representations of p-adic fields. This is a generalization of a result of Colmez who classified two-dimensional split trianguline representations of for p≠2 by using (φ,Γ)-modules over a Robba ring. In this article, for any prime p and for any p-adic field K, we classify two-dimensional split trianguline representations of using B-pairs as defined by Berger.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.