We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this chapter, we will focus on the statistical spectral dynamics which are paramount to understanding the development of the integrated mixing quantities described in Chapter 5. Reynolds flow averaging and the turbulent kinetic energy are introduced. In addition, I will discuss how the energy of the flows is transferred from large scale to small scale modes, as well as the impact of the shockwave and gravity on the isotropy of the flows. The flow spectra allow several important length scales to be defined. Numeric simulations and experimental data will be offered to provide insights on the mixing processes.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.