We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let R be a ring with identity of characteristic two and G a nontrivial torsion group. We show that if the units in the group ring
$RG$
are all trivial, then G must be cyclic of order two or three. We also consider the case where R is a commutative ring with identity of odd prime characteristic and G is a nontrivial locally finite group. We show that in this case, if the units in
$RG$
are all trivial, then G must be cyclic of order two. These results improve on a result of Herman et al. [‘Trivial units for group rings with G-adapted coefficient rings’, Canad. Math. Bull.48(1) (2005), 80–89].
For $\delta \ge 1$ and $n\ge 1$, consider the simplicial complex of graphs on $n$ vertices in which each vertex has degree at most $\delta$; we identify a given graph with its edge set and admit one loop at each vertex. This complex is of some importance in the theory of semigroup algebras. When $\delta =1$, we obtain the matching complex, for which it is known that there is 3-torsion in degree $d$ of the homology whenever $\left( n-4 \right)/3\le d\le \left( n-6 \right)/2$. This paper establishes similar bounds for $\delta \ge 2$. Specifically, there is 3-torsion in degree $d$ whenever
The procedure for detecting torsion is to construct an explicit cycle $z$ that is easily seen to have the property that $3z$ is a boundary. Defining a homomorphism that sends $z$ to a non-boundary element in the chain complex of a certain matching complex, we obtain that $z$ itself is a non-boundary. In particular, the homology class of $z$ has order 3.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.