We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The thermodynamics potentials for describing matter at nonzero temperatures and densities or chemical potentials are summarized. Emphasis is put on the thermodynamically correct description within the canonical and grand canonical ensemble for dense matter. The notion of chemical equilibrium is introduced for several conserved quantities and used to describe matter in β-equilibrium where charge and baryon number are conserved. The limit for nonrelativistic and relativistic particles is worked out in detail. The concept of an equation of state is introduced and applied to free Fermi gases. The pressure integral is solved analytically and the nonrelativistic and relativistic limits for the equation of state are delineated. Finally, the properties of polytropes are discussed and connected to the limiting cases of the equation of state of a free Fermi gas.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.