We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A lattice walk with all steps having the same length $d$ is called a $d$-walk. Denote by ${\mathcal{T}}_{d}$ the terminal set, that is, the set of all lattice points that can be reached from the origin by means of a $d$-walk. We examine some geometric and algebraic properties of the terminal set. After observing that $({\mathcal{T}}_{d},+)$ is a normal subgroup of the group $(\mathbb{Z}^{N},+)$, we ask questions about the quotient group $\mathbb{Z}^{N}/{\mathcal{T}}_{d}$ and give the number of elements of $\mathbb{Z}^{2}/{\mathcal{T}}_{d}$ in terms of $d$. To establish this result, we use several consequences of Fermat’s theorem about representations of prime numbers of the form $4k+1$ as the sum of two squares. One of the consequences is the fact, observed by Sierpiński, that every natural power of such a prime number has exactly one relatively prime representation. We provide explicit formulas for the relatively prime integers in this representation.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.