We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Most electrified aircraft propulsion (EAP) studies define a concept architecture and compute its potential benefits and key dependencies while attempting to answer the question: Can this architecture “buy its way” onto an aircraft? An important follow-on question is when will the architecture become physically and economically viable? Answering these two questions is the goal of the performance assessment process, a systematic method of analyzing the trade-offs when choosing an EAP system over a traditional one. Its methodologies and assumptions must be reasonable, and detailed comparisons to an appropriate baseline architecture must be included. This chapter outlines a systematic performance assessment process for EAP concept architectures, providing a means of deriving system-level figures of merit. Key steps in the process are identified and details are given for how they might reasonably be performed. Concepts and conclusions from earlier chapters are incorporated as needed. This serves as a guide to aircraft designers – new and old – who are beginning to delve into this exciting field and starting to explore the large design space enabled by EAP configurations.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.