We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A supernilpotent radical α is called bad if the class π(α) of all prime and α-semisimple rings consists of the one-element ring 0 only. We construct infinitely many bad supernilpotent radicals which form a generalization of Ryabukhin’s example of a supernilpotent nonspecial radical. We show that the family of all bad supernilpotent radicals is a sublattice of the lattice of all supernilpotent radicals and give examples of supernilpotent radicals that are not bad.
Let ρ be a supernilpotent radical. Let ρ* be the class of all rings A such that either A is a simple ring in ρ or the factor ring A/I is in ρ for every nonzero ideal I of A and every minimal ideal M of A is in ρ. Let be the lower radical determined by ρ* and let ρφ denote the upper radical determined by the class of all subdirectly irreducible rings with ρ-semisimple hearts. Le Roux and Heyman proved that is a supernilpotent radical with and they asked whether if ρ is replaced by β, ℒ , 𝒩 or 𝒥 , where β, ℒ , 𝒩 and 𝒥 denote the Baer, the Levitzki, the Koethe and the Jacobson radical, respectively. In the present paper we will give a negative answer to this question by showing that if ρ is a supernilpotent radical whose semisimple class contains a nonzero nonsimple * -ring without minimal ideals, then is a nonspecial radical and consequently . We recall that a prime ring A is a * -ring if A/I is in β for every .
It is proved that a regular essentially closed and weakly homomorphically closed proper subclass of rings consists of semiprime rings. A regular class M defines a supernilpotent upper radical if and only if M consists of semiprime rings and the essential cover Mk of M is contained in the semisimple class S U M. A regular essentially closed class M containing all semisimple prime rings, defines a special upper radical if and only if M satisfies condition (S): every M-ring is a subdirect sum of prime M-rings. Thus we obtained a characterization of semisimple classes of special radicals; a subclas S of rings is the semisimple class of a special radical if and only if S is regular, subdirectly closed, essentially closed, and satisfies condition (S). The results are valid for alternative rings too.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.