We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
"Ataxia" refers to both the neurologic syndrome of motor coordination and to a large and diverse group of diseases that have motor coordination impairment as their main clinical feature. The brain structure most consistently affected is the cerebellum. Although many different brain diseases may manifest with ataxia, the vast majority of slowly progressive ataxias are genetic diseases. Indeed, genetic molecular analysis has become the cornerstone of both diagnosis and classification of this complex group of conditions. In this overview, the basics of the clinical features and the classification of these diseases, as well as common conditions, and recently defined novel forms of ataxia are discussed.
There is limited information on rare spinocerebellar ataxia (SCA) variants, particularly in the Canadian population. This study aimed to describe the demographic and clinical features of uncommon SCA subtypes in Canada and compare them with international data.
Methods:
We conducted a case series and literature review of adult patients with rare SCA subtypes, including SCA5, SCA7, SCA12, SCA14, SCA15, SCA28, SCA34, SCA35 and SCA36. Data were collected from medical centers in Ontario, Alberta and Quebec between January 2000 and February 2021.
Results:
We analyzed 25 patients with rare SCA subtypes, with onset ages ranging from birth to 67 years. Infantile and juvenile-onset cases were observed in SCA5, SCA7, SCA14 and SCA34. Most patients presented with gait ataxia, with no significant differences across groups. Additional common features included saccadic abnormalities (22 of 25), dysarthria (19 of 25) and nystagmus (12 of 22, except in SCA7). Less common findings included dystonia (8 of 25), cognitive impairment (7 of 25), tremor (9 of 25) and parkinsonism (3 of 25).
Conclusion:
Our study highlights the heterogeneity of rare SCA subtypes in Canada. Ongoing longitudinal analysis will improve the understanding, management and screening of these disorders.
This chapter reviews the major advances in autosomal recessive and autosomal dominant ataxias, discusses the use of genetic tests in these disorders, and summarizes some current ideas regarding pathogenesis. It also presents a list of the autosomal recessive ataxias that have been genotypically characterized to date. Mutations in ataxia with isolated vitamin E deficiency (AVED) are scattered throughout the gene and some of them may be associated with a mild phenotype, late onset, retinitis pigmentosa, and retained reflexes. A syndrome of ataxia associated with optic atrophy, visual loss, and cochlear degeneration has been mapped to chromosome. The spinocerebellar ataxia (SCAs) exhibits many phenotypic similarities so that it is almost impossible to diagnose the genotype from the phenotype alone. Many persons from families with ataxia will request predictive testing and occasionally prenatal testing. Disease-modifying therapies are under investigation and include antioxidants and drugs that may modify excitotoxicity or apoptosis.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.