We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Hypotension is an adverse event that may be related to systemic exposure of milrinone; however, the true exposure–safety relationship is unknown.
Methods:
Using the Pediatric Trials Network multicentre repository, we identified children ≤17 years treated with milrinone. Hypotension was defined according to age, using the Pediatric Advanced Life Support guidelines. Clinically significant hypotension was defined as hypotension with concomitant lactate >3 mg/dl. A prior population pharmacokinetic model was used to simulate milrinone exposures to evaluate exposure–safety relationships.
Results:
We included 399 children with a median (quarter 1, quarter 3) age of 1 year (0,5) who received 428 intravenous doses of milrinone (median infusion rate 0.31 mcg/kg/min [0.29,0.5]). Median maximum plasma milrinone concentration was 110.7 ng/ml (48.4,206.2). Median lowest systolic and diastolic blood pressures were 74 mmHg (60,85) and 35 mmHg (25,42), respectively. At least 1 episode of hypotension occurred in 178 (45%) subjects; clinically significant hypotension occurred in 10 (2%). The maximum simulated milrinone plasma concentrations were higher in subjects with clinically significant hypotension (251 ng/ml [129,329]) versus with hypotension alone (86 ng/ml [44, 173]) versus without hypotension (122 ng/ml [57, 208], p = 0.002); however, this relationship was not retained on multivariable analysis (odds ratio 1.01; 95% confidence interval 0.998, 1.01).
Conclusions:
We successfully leveraged a population pharmacokinetic model and electronic health record data to evaluate the relationship between simulated plasma concentration of milrinone and systemic hypotension occurrence, respectively, supporting the broader applicability of our novel, efficient, and cost-effective study design for examining drug exposure–response and –safety relationships.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.