We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Liu [‘On a congruence involving q-Catalan numbers’, C. R. Math. Acad. Sci. Paris358 (2020), 211–215] studied congruences of the form $\sum _{k=0}^{n-1} q^k\mathcal {C}_k$ modulo the cyclotomic polynomial $\Phi _n(q)^2$, provided that $n\equiv \pm 1\pmod 3$. Apparently, the case $n\equiv 0\pmod 3$ has been missing from the literature. Our primary purpose is to fill this gap. In addition, we discuss a certain fascinating link to Dirichlet character sum identities.
We develop some basic homological theory of hopfological algebra as defined by Khovanov [Hopfological algebra and categorification at a root of unity: the first steps, Preprint (2006), arXiv:math/0509083v2]. Several properties in hopfological algebra analogous to those of usual homological theory of DG algebras are obtained.
Let $k$ be a field, and let $\alpha$ and $\alpha'$ be two algebraic numbers conjugate over $k$. We prove a result which implies that if $L\subset k(\alpha,\alpha')$ is an abelian or Hamiltonian extension of $k$, then $[L:k]\leq[k(\alpha):k]$. This is related to a certain question concerning the degree of an algebraic number and the degree of a quotient of its two conjugates provided that the quotient is a root of unity, which was raised (and answered) earlier by Cantor. Moreover, we introduce a new notion of the non-torsion power of an algebraic number and prove that a monic polynomial in $X$—irreducible over a real field and having $m$ roots of equal modulus, at least one of which is real—is a polynomial in $X^m$.