We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Virtual reality has emerged as a unique educational modality for medical trainees. However, incorporation of virtual reality curricula into formal training programmes has been limited. We describe a multi-centre effort to develop, implement, and evaluate the efficacy of a virtual reality curriculum for residents participating in paediatric cardiology rotations.
Methods:
A virtual reality software program (“The Stanford Virtual Heart”) was utilised. Users are placed “inside the heart” and explore non-traditional views of cardiac anatomy. Modules for six common congenital heart lesions were developed, including narrative scripts. A prospective case–control study was performed involving three large paediatric residency programmes. From July 2018 to June 2019, trainees participating in an outpatient cardiology rotation completed a 27-question, validated assessment tool. From July 2019 to February 2020, trainees completed the virtual reality curriculum and assessment tool during their cardiology rotation. Qualitative feedback on the virtual reality experience was also gathered. Intervention and control group performances were compared using univariate analyses.
Results:
There were 80 trainees in the control group and 52 in the intervention group. Trainees in the intervention group achieved higher scores on the assessment (20.4 ± 2.9 versus 18.8 ± 3.8 out of 27 questions answered correctly, p = 0.01). Further analysis showed significant improvement in the intervention group for questions specifically testing visuospatial concepts. In total, 100% of users recommended integration of the programme into the residency curriculum.
Conclusions:
Virtual reality is an effective and well-received adjunct to clinical curricula for residents participating in paediatric cardiology rotations. Our results support continued virtual reality use and expansion to include other trainees.
Understanding how cardiovascular structure and physiology guide management is critically important in paediatric cardiology. However, few validated educational tools are available to assess trainee knowledge. To address this deficit, paediatric cardiologists and fellows from four institutions collaborated to develop a multimedia assessment tool for use with medical students and paediatric residents. This tool was developed in support of a novel 3-dimensional virtual reality curriculum created by our group.
Methods:
Educational domains were identified, and questions were iteratively developed by a group of clinicians from multiple centres to assess understanding of key concepts. To evaluate content validity, content experts completed the assessment and reviewed items, rating item relevance to educational domains using a 4-point Likert scale. An item-level content validity index was calculated for each question, and a scale-level content validity index was calculated for the assessment tool, with scores of ≥0.78 and ≥0.90, respectively, representing excellent content validity.
Results:
The mean content expert assessment score was 92% (range 88–97%). Two questions yielded ≤50% correct content expert answers. The item-level content validity index for 29 out of 32 questions was ≥0.78, and the scale-level content validity index was 0.92. Qualitative feedback included suggestions for future improvement. Questions with ≤50% content expert agreement and item-level content validity index scores <0.78 were removed, yielding a 27-question assessment tool.
Conclusions:
We describe a multi-centre effort to create and validate a multimedia assessment tool which may be implemented within paediatric trainee cardiology curricula. Future efforts may focus on content refinement and expansion to include additional educational domains.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.