We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We are now ready to introduce magnetic fields, which are generated by electrical currents and which apply forces on moving charges and current-carrying wires. Historically, magnetic effects in lodestones, an iron ore that can be magnetized, have been known for a long time. The first magnetic compasses date back to about 1000 BCE, and the ancient Chinese are believed to have used such devices for navigation as early as 1100 CE. The properties of magnetic fields can be derived from a number of observations of magnetic effects that have been recorded over many years. One of the earliest such observations, by Hans Christian Oersted in 1820, was that a current-carrying wire exerts a torque on a permanent magnet (such as a compass). Current-carrying wires can also exert forces on each other, as first observed by Biot and Savart and more fully characterized by Ampère. Finally, beams of charged particles, such as electrons in a cathode ray tube (see TechNote 3.4), are deflected when in the presence of current-carrying wires. Each of these phenomena can be described quantitatively in terms of a magnetic field produced by current distributions, as we will discuss throughout this chapter.
This chapter introduces the basic equations used to describe multiphase flow. It also introduces key concepts such as saturation, wettability, relative permeability, and capillary pressure. Combining the multiphase extension of Darcy's law with mass conservation of fluid phases or chemical components gives a system of parabolic PDEs. The chapter derives the so-called fractional flow formulation and discusses several special cases of two-phase flow equations. The chapter ends with a discussion of various analytical and semi-analytical 1D solutions, including the classical Buckley–Leverett problem.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.