We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For any real polynomial $p(x)$ of even degree k, Shapiro [‘Problems around polynomials: the good, the bad and the ugly$\ldots $’, Arnold Math. J.1(1) (2015), 91–99] proposed the conjecture that the sum of the number of real zeros of the two polynomials $(k-1)(p{'}(x))^{2}-kp(x)p{"}(x)$ and $p(x)$ is larger than 0. We prove that the conjecture is true except in one case: when the polynomial $p(x)$ has no real zeros, the derivative polynomial $p{'}(x)$ has one real simple zero, that is, $p{'}(x)=C(x)(x-w)$, where $C(x)$ is a polynomial with $C(w)\ne 0$, and the polynomial $(k-1)(C(x))^2(x-w)^{2}-kp(x)C{'}(x)(x-w)-kC(x)p(x)$ has no real zeros.
In 1987, Alavi, Malde, Schwenk and Erdős conjectured that the independence polynomial of any tree is unimodal. Although it attracts many researchers' attention, it is still open. Motivated by this conjecture, in this paper, we prove that rooted products of some graphs preserve real rootedness of independence polynomials. As application, we not only give a unified proof for some known results, but also we can apply them to generate infinite kinds of trees whose independence polynomials have only real zeros. Thus their independence polynomials are unimodal.
We investigate whether differential polynomials in real transcendental meromorphic functions have non-real zeros. For example, we show that if $g$ is a real transcendental meromorphic function, $c\in\mathbb{R}\setminus\{0\}$ and $n\geq3$ is an integer, then $g'g^n-c$ has infinitely many non-real zeros. If $g$ has only finitely many poles, then this holds for $n\geq2$. Related results for rational functions $g$ are also considered.
Let X0, X1…Xn,… be a stationary Gaussian process. We give sufficient conditions for the expected number of real zeros of the polynomial Qn (z) = Σnj =o X jzj to be (2/ π)log n as n tends to infinity.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.