We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\Omega =\mathbb {Z}\omega _1+\mathbb {Z}\omega _2$ be a lattice in $\mathbb {C}$ with invariants $g_2,g_3$ and $\sigma _{\Omega }(z)$ the associated Weierstrass $\sigma $-function. Let $\eta _1$ and $\eta _2$ be the quasi-periods associated to $\omega _1$ and $\omega _2$, respectively. Assuming $\eta _2/\eta _1$ is a nonzero real number, we give an upper bound for the number of algebraic points on the graph of $\sigma _{\Omega }(z)$ of bounded degrees and bounded absolute Weil heights in some unbounded region of $\mathbb {C}$ in the following three cases: (i) $\omega _1$ and $\omega _2$ algebraic; (ii) $g_2$ and $g_3$ algebraic; (iii) the algebraic points are far from the lattice points.
We develop tools for constructing rigid analytic trivializations for Drinfeld modules as infinite products of Frobenius twists of matrices, from which we recover the rigid analytic trivialization given by Pellarin in terms of Anderson generating functions. One advantage is that these infinite products can be obtained from only a finite amount of initial calculation, and consequently we obtain new formulas for periods and quasi-periods, similar to the product expansion of the Carlitz period. We further link to results of Gekeler and Maurischat on the
$\infty $
-adic field generated by the period lattice.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.