We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this chapter contextual probabilistic entanglement is represented withinthe Hilbert space formalism. The notion of entanglement is clarified anddemystified through decoupling it from the tensor product structure andtreating it as a constraint posed by probabilistic dependence of quantum observablesA and B. In this framework, it is meaningless to speak aboutentanglement without pointing to the fixed observables A and B, so thisis AB-entanglement. Dependence of quantum observables is formalized asnon-coincidence of conditional probabilities. Starting with this probabilisticdefinition, we achieve the Hilbert space characterization of the AB-entangledstates as amplitude non-factorisable states. In the tensor productcase, AB-entanglement implies standard entanglement, but not vice versa.AB-entanglement for dichotomous observables is equivalent to their correlation. Finally, observables entanglement is compared with dependence of random variables in classical probability theory.
According to quantum mechanics, the information with respect to any measurement on a physical system is contained in a mathematical object, the wave function. In this chapter we become familiar with the mathematical objects that represent the measured properties themselves, namely the quantum mechanical operators. We start from a brief introduction into operators and their properties, emphasizing linear operators, and noncommuting operators. Then we introduce the canonical position and momentum operators. Defining functions of operators, we derive different quantum mechanical operators that correspond to different physical observables, including angular momentum, kinetic energy, and the scalar potential energy. Finally, we introduce the quantum mechanical total energy operator (the Hamiltonian) and demonstrate its explicit generic form for nanoscale building blocks such as atoms and molecules.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.