To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Chapter 15 extensively examines the resource theory of asymmetry, focusing on the significance of asymmetry as a quantum resource, particularly in situations lacking a shared reference frame. The chapter begins by identifying the foundational elements, such as free states and operations within this theory, emphasizing their role in alignment of quantum reference frames. A significant part of the discussion revolves around the quantification of asymmetry, utilizing measures like the Fisher information and Wigner–Yanase–Dyson skew information to assess the degree of asymmetry in quantum states. The concept of G-twirling is introduced as a method to achieve symmetric states, serving as a key technique in analyzing and understanding asymmetry. Moreover, the chapter explores how asymmetry can enhance tasks like parameter estimation, leveraging the maximum likelihood method to improve precision.
The rapid development of quantum technologies has driven a revolution in related research areas such as quantum computation and communication, and quantum materials. The first prototypes of functional quantum devices are beginning to appear, frequently created using ensembles of atoms, which allow the observation of sensitive, quantum effects, and have important applications in quantum simulation and matter wave interferometry. This modern text offers a self-contained introduction to the fundamentals of quantum atom optics and atomic many-body matter wave systems. Assuming a familiarity with undergraduate quantum mechanics, this book will be accessible for graduate students and early career researchers moving into this important new field. A detailed description of the underlying theory of quantum atom optics is given, before development of the key, quantum, technological applications, such as atom interferometry, quantum simulation, quantum metrology, and quantum computing.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.