We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The chapter introduces the basic elements of the homological language and translates the statements about complemented and uncomplemented subspaces presented in Chapter 1 into this language. The reader will find everything they need to know at this stage about exact sequences, categorical and homological constructions for absolute beginners and injective and projective Banach and quasi-Banach spaces. The chapter describes the basic homological constructions appearing in nature: complex interpolation, the Nakamura-Kakutani, Foia\c{s}-Singer, Pe\l czy\’nski-Lusky and Bourgain’s $\ell_1$ sequences, the Ciesielski-Pol, Bell-Marciszewski and Bourgain-Pisier constructions, the Johnson-Lindenstrauss spaces and so on. A good number of advanced topics are included: diagonal and parallel principles for exact sequences, the Device, 3-space results, extension and lifting of operators, $M$-ideals and vector-valued Sobczyk’s theorems
Let $P$ be a finitely generated cancellative abelian monoid. A $P$-graph ${\rm\Lambda}$ is a natural generalization of a $k$-graph. A pullback of ${\rm\Lambda}$ is constructed by pulling it back over a given monoid morphism to $P$, while a pushout of ${\rm\Lambda}$ is obtained by modding out its periodicity, which is deduced from a natural equivalence relation on ${\rm\Lambda}$. One of our main results in this paper shows that, for some $k$-graphs ${\rm\Lambda}$, ${\rm\Lambda}$ is isomorphic to the pullback of its pushout via a natural quotient map, and that its graph $\text{C}^{\ast }$-algebra can be embedded into the tensor product of the graph $\text{C}^{\ast }$-algebra of its pushout and $\text{C}^{\ast }(\text{Per}\,{\rm\Lambda})$. As a consequence, in this case, the cycline algebra generated by the standard generators corresponding to equivalent pairs is a maximal abelian subalgebra, and there is a faithful conditional expectation from the graph $\text{C}^{\ast }$-algebra onto it.
We devise a fairly general sufficient condition ensuring that the endomorphism monoid of a countably infinite ultrahomogeneous structure (i.e. a Fraïssé limit) embeds all countable semigroups. This approach not only provides us with a framework unifying the previous scattered results in this vein, but actually yields new applications for endomorphism monoids of the (rational) Urysohn space and the countable universal ultrahomogeneous semilattice.
We consider the pushout of embedding functors in Cat, the category of small categories. We show that if the embedding functors satisfy a 3-for-2 property, then the induced functors to the pushout category are also embeddings. The result follows from the connectedness of certain associated slice categories. The condition is motivated by a similar result for maps of semigroups. We show that our theorem can be applied to groupoids and to inclusions of full subcategories. We also give an example to show that the theorem does not hold when the property only holds for one of the inclusion functors, or when it is weakened to a one-sided condition.
The notions of limits and colimits are studied in the category of C*-algebras. It is shown that limits and colimits of diagrams of C*-algebras are stable under tensor product by a fixed C*-algebra, and crossed product by a locally compact group.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.