We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Just as the concept of stress gives us a measure of force distributions in a deformable body, the concept of strain describes the distribution of deformations locally at every point within the body. In this chapter we will define strains and describe how strains change with directions and with the choice of coordinates, as was done with stresses. Strains will also be related to the displacements of the deformable body. It will be shown that strains must satisfy a set of compatibility equations at every point in a body to ensure that they represent a well-behaved deformation. Since the strains often found in practice are quite small, this book will only consider problems for small strains.
The components of the infinitesimal strain tensor are defined, which represent measures of the relative length changes (longitudinal strains or dilatations) and the angle changes (shear strains) at a considered material point with respect to the chosen coordinate axes. The principal strains (maximum and minimum dilatations) and the maximum shear strains are determined, as well as the areal and volumetric strains. The expressions for the strain components are derived in terms of the spatial gradients of the displacement components. The Saint-Venant compatibility equations are introduced which assure the existence of single-valued displacements associated with a given strain field. The matrix of local material rotations, which accompany the strain components in producing the displacement gradient matrix, is defined. The determination of the displacement components by integration of the strain components is discussed.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.