We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Time-dependent Cox proportional hazards regression is a popular statistical method used in kidney disease research to evaluate associations between biomarkers collected serially over time with progression to kidney failure. Typically, biomarkers of interest are considered time-dependent covariates being updated at each new measurement using last observation carried forward (LOCF). Recently, joint modeling has emerged as a flexible alternative for multivariate longitudinal and time-to-event data. This study describes and demonstrates multivariate joint modeling using as an example the association of serial biomarkers (plasma oxalate [POX] and urinary oxalate [UOX]) and kidney function among patients with primary hyperoxaluria in the Rare Kidney Stone Consortium Registry.
Methods:
Time-to-kidney failure was regressed on serially measured biomarkers in two ways: time-dependent LOCF Cox proportional hazards regression and multivariate joint models.
Results:
In time-dependent LOCF Cox regression, higher POX was associated with increased risk of kidney failure (HR = 2.20 per doubling, 95% CI = [1.38-3.51], p < 0.001) whereas UOX was not (HR = 1.08 per doubling, [0.66–1.77], p = 0.77). In multivariate joint models, estimates suggest higher UOX may be associated with lower risk of kidney failure (HR = 0.42 per doubling [0.15–1.04], p = 0.066), though not statistically significant, since impaired urinary excretion of oxalate may reflect worsening kidney function.
Conclusions:
Multivariate joint modeling is more flexible than LOCF and may better reflect biological plausibility since biomarkers are not steady-state values between measurements. While LOCF is preferred to naïve methods not accounting for changes in biomarkers over time, results may not accurately reflect flexible relationships that can be captured with multivariate joint modeling.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.