We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this chapter, we argue that if we are blinded by the constant stream of astrophysical and cosmological observations, we may forget that cosmology is the youngest of all the physical sciences. The 1965 discovery of the CMB radiation by Penzias and Wilson moved cosmology to the territory of firmly observational science from the domain of exclusively mathematical modeling, and the 1977 measurements of CMB’s anisotropies with detectors mounted on US spy aircraft opened its Big Science phase. A number of measurements of the CMB spectral shape by detectors mounted on rockets and balloons following the 1965 discovery led to fluctuating agreement with the values of the black body radiation spectrum. In particular, 1978–1979 measurements exhibited discrepancies that gave new impetus to the alternative explanations of the radiation. A series of satellite measurements since the early 1990s, with equipment similar to previous experiments but without atmospheric disturbances, led to the final phase of the convergence to the Hot Big Bang model.
Rudimentary catalogues of cosmic voids were first complied in the mid-1980s, but they were limited in scope by the lack of adequate deep galaxy survey data. Over several decades, catalogues have improved as have cosmic void identification methods. Voids in the galaxy distribution have become important objects and modern tools that are now used to investigate properties of the Universe. They have been and continue to be applied to problems in precision cosmology. The first step in utilizing this new tool is to compile massive surveys of the distant Universe that yield sufficiently large samples of cosmic voids. Then reliable void identification techniques were developed. These include sophisticated methods of 3D analysis. For some tests, “stacked voids” are created to enhance the measurement precision. Specific research results are summarized showing concrete results. Three other topics are discussed: topology of the void and supercluster structure, the LTB Universe models, and finally void galaxies.
The large-scale structure of the Universe is dominated by vast voids with galaxies clustered in knots, sheets, and filaments, forming a great 'cosmic web'. In this personal account of the major astronomical developments leading to this discovery, we learn from Laird A. Thompson, a key protagonist, how the first 3D maps of galaxies were created. Using non-mathematical language, he introduces the standard model of cosmology before explaining how and why ideas about cosmic voids evolved, referencing the original maps, reproduced here. His account tells of the competing teams of observers, racing to publish their results, the theorists trying to build or update their models to explain them, and the subsequent large-scale survey efforts that continue to the present day. This is a well-documented account of the birth of a major pillar of modern cosmology, and a useful case study of the trials surrounding how this scientific discovery became accepted.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.