To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Chapter 5 treats the fundamentals of small-scale fading and the propagation mechanisms that cause multipath, doppler spread, time dispersion, and distortions to transmitted signals in the radio propagation channel. Detailed theoretical derivations and explanations for the small-scale channel impairments are presented with numerous examples. Flat and frequency selective fading, as well as fast and slow fading, are defined and analyzed. Key distributions found in the real world, such as Raleigh fading, Rician fading, and the classical Clarke and Gans model for multipath, are presented. Shape factor theory shows how the classical small-scale fading results may be replicated with excellent accuracy using the first thee Fourier coefficients of the spatial distribution of energy arriving at an antenna.
When designing a wireless communication system, it is essential to have a channel model that can quickly and accurately generate channel impulse response needed for system simulations. Deterministic models such as ray-tracing offer an accurate model of the propagation environment, but their high computational complexity prohibits the intensive link or system-level simulations required during system design. Hence, models with lower computational complexity that could emulate a large class of radio-propagation environments are preferred. These requirements have led to stochastic channel models, which are often classified into geometry-based stochastic models (GSCMs) and nongeometrical stochastic models. In this chapter we focus on the GSCM models.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.