We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this chapter, we study general incidence bounds in R^d. As a warm-up, we first derive an incidence bound for curves in R^3. The main result of this chapter is a general point-variety incidence bound in R^d. This result relies on another polynomial partitioning theorem, for the case where the points are on a constant-degree variety. The proof of this partitioning theorem relies on Hilbert polynomials. In particular, we use Hilbert polynomials to derive a polynomial ham sandwich theorem for points on a variety.
It is usually easier to study problems over the complex than over the reals. Discrete geometry problems are an exception, often being significantly simpler over the reals. While there are several simple proofs of the Szemerédi–Trotter theorem over the reals, we only have rather involved proofs for the complex variant of the theorem. To avoid such involved proofs, we prove a slightly weaker variant of the complex Szemerédi–Trotter theorem. Our analysis is based on thinking of C^2 as R^4.
In Chapter 7, we began to prove the distinct distances theorem by studying the ESGK framework. We complete this proof in Chapter 9, by relying on the constant-degree polynomial partitioning technique. In the current chapter we introduce this technique by studying incidences with lines in the complex plane. This is a warm-up towards Chapter 9, where we use constant-degree polynomial partitioning in more involved ways.
In Chapter 7 we studied the ESGK framework. This was a reduction from the distinct distances problem to a problem about pairs of intersecting lines in R^3. In the current chapter we further reduce the problem to bounding the number of rich points of lines in R^3. We solve this incidence problem with a more involved variant of the constant-degree polynomial partitioning technique. This completes the proof of the Guth–Katz distinct distances theorem.
The original proof of Guth and Katz is quite involved. We study a simpler proof for a slightly weaker variant of the distinct distances theorem. This simpler proof was introduced by Guth and avoids the use of tools such as flat points and properties of ruled surfaces.
The past decade has seen numerous major mathematical breakthroughs for topics such as the finite field Kakeya conjecture, the cap set conjecture, Erdős's distinct distances problem, the joints problem, as well as others, thanks to the introduction of new polynomial methods. There has also been significant progress on a variety of problems from additive combinatorics, discrete geometry, and more. This book gives a detailed yet accessible introduction to these new polynomial methods and their applications, with a focus on incidence theory. Based on the author's own teaching experience, the text requires a minimal background, allowing graduate and advanced undergraduate students to get to grips with an active and exciting research front. The techniques are presented gradually and in detail, with many examples, warm-up proofs, and exercises included. An appendix provides a quick reminder of basic results and ideas.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.