We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Helmholtz equation
$-\nabla\cdot (a\nabla u) - \omega^2 u = f$
is considered in an unbounded wave guide
$\Omega := \mathbb{R} \times S \subset \mathbb{R}^d$
,
$S\subset \mathbb{R}^{d-1}$
a bounded domain. The coefficient a is strictly elliptic and either periodic in the unbounded direction
$x_1 \in \mathbb{R}$
or periodic outside a compact subset; in the latter case, two different periodic media can be used in the two unbounded directions. For non-singular frequencies
$\omega$
, we show the existence of a solution u. While previous proofs of such results were based on analyticity arguments within operator theory, here, only energy methods are used.
This work concerns multiple-scattering problems for time-harmonic equations in a reference generic media. We consider scatterers that can be sources, obstacles or compact perturbations of the reference media. Our aim is to restrict the computational domain to small compact domains containing the scatterers. We use Robin-to-Robin (RtR) operators (in the most general case) to express boundary conditions for the interior problem. We show that one can always factorize the RtR map using only operators defined using single-scatterer problems. This factorization is based on a decomposition of the diffracted field, on the whole domain where it is defined. Assuming that there exists a good method for solving single-scatterer problems, it then gives a convenient way to compute RtR maps for a random number of scatterers.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.