We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The aim of this study was to evaluate the safety and feasibility of a passive range of motion exercise programme for infants with CHD.
Study design
This non-randomised pilot study enrolled 20 neonates following Stage I palliation for single-ventricle physiology. Trained physical therapists administered standardised 15–20-minute passive range of motion protocol, for up to 21 days or until hospital discharge. Safety assessments included vital signs measured before, during, and after the exercise as well as adverse events recorded through the pre-Stage II follow-up. Feasibility was determined by the percent of days that >75% of the passive range of motion protocol was completed.
Results
A total of 20 infants were enrolled (70% males) for the present study. The median age at enrolment was 8 days (with a range from 5 to 23), with a median start of intervention at postoperative day 4 (with a range from 2 to 12). The median hospital length of stay following surgery was 15 days (with a range from 9 to 131), with an average of 13.4 (with a range from 3 to 21) in-hospital days per patient. Completion of >75% of the protocol was achieved on 88% of eligible days. Of 11 adverse events reported in six patients, 10 were expected with one determined to be possibly related to the study intervention. There were no clinically significant changes in vital signs. At pre-Stage II follow-up, weight-for-age z-score (−0.84±1.20) and length-for-age z-score (−0.83±1.31) were higher compared with historical controls from two earlier trials.
Conclusion
A passive range of motion exercise programme is safe and feasible in infants with single-ventricle physiology. Larger studies are needed to determine the optimal duration of passive range of motion and its effect on somatic growth.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.