We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In the 1970s, Dwork defined the logarithmic growth (log-growth for short) filtrations for $p$-adic differential equations $Dx=0$ on the $p$-adic open unit disc $|t|<1$, which measure the asymptotic behavior of solutions $x$ as $|t|\to 1^{-}$. Then, Dwork calculated the log-growth filtration for $p$-adic Gaussian hypergeometric differential equation. In the late 2000s, Chiarellotto and Tsuzuki proposed a fundamental conjecture on the log-growth filtrations for $(\varphi ,\nabla )$-modules over $K[\![t]\!]_0$, which can be regarded as a generalization of Dwork's calculation. In this paper, we prove a generalization of the conjecture to $(\varphi ,\nabla )$-modules over the bounded Robba ring. As an application, we prove a generalization of Dwork's conjecture proposed by Chiarellotto and Tsuzuki on the specialization property for log-growth Newton polygons.
We correct some statements and proofs of K. S. Kedlaya [Local and global structure of connections on nonarchimedean curves, Compos. Math. 151 (2015), 1096–1156]. To summarize, Proposition 1.1.2 is false as written, and we provide here a corrected statement and proof (and a corresponding modification of Remark 1.1.3); the proofs of Theorem 2.3.17 and Theorem 3.8.16, which rely on Proposition 1.1.2, are corrected accordingly; some missing details in the proofs of Theorem 3.4.20 and Theorem 3.4.22 are filled in; and a few much more minor corrections are recorded.
Consider a vector bundle with connection on a $p$-adic analytic curve in the sense of Berkovich. We collect some improvements and refinements of recent results on the structure of such connections, and on the convergence of local horizontal sections. This builds on work from the author’s 2010 book and on subsequent improvements by Baldassarri and by Poineau and Pulita. One key result exclusive to this paper is that the convergence polygon of a connection is locally constant around every type 4 point.
Let $X$ be a smooth proper curve over a finite field of characteristic $p$. We prove a product formula for $p$-adic epsilon factors of arithmetic $\mathscr{D}$-modules on $X$. In particular we deduce the analogous formula for overconvergent $F$-isocrystals, which was conjectured previously. The $p$-adic product formula is a counterpart in rigid cohomology of the
Deligne–Laumon formula for epsilon factors in $\ell$-adic étale cohomology (for $\ell \neq p$). One of the main tools in the proof of this $p$-adic formula is a theorem of regular stationary phase for
arithmetic $\mathscr{D}$-modules that we prove by microlocal techniques.
Let K be a complete discrete valuation field of mixed characteristic (0,p), with possibly imperfect residue field. We prove a Hasse–Arf theorem for the arithmetic ramification filtrations on GK, except possibly in the absolutely unramified and non-logarithmic case, or the p=2 and logarithmic case. As an application, we obtain a Hasse–Arf theorem for filtrations on finite flat group schemes over 𝒪K.
For a ∇-module M over the ring K[[x]]0 of bounded functions over a p-adic local field K we define the notion of special and generic log-growth filtrations on the base of the power series development of the solutions and horizontal sections. Moreover, if M also admits a Frobenius structure then it is endowed with generic and special Frobenius slope filtrations. We will show that in the case of M a ϕ–∇-module of rank 2, the Frobenius polygon for M and the log-growth polygon for its dual, Mv, coincide, this is proved by showing explicit relationships between the filtrations. This will lead us to formulate some conjectural links between the behaviours of the filtrations arising from the log-growth and Frobenius structures of the differential module. This coincidence between the two polygons was only known for the hypergeometric cases by Dwork.
We develop the theory of p-adic confluence of q-difference equations. The main result is the fact that, in the p-adic framework, a function is a (Taylor) solution of a differential equation if and only if it is a solution of a q-difference equation. This fact implies an equivalence, called confluence, between the category of differential equations and those of q-difference equations. We develop this theory by introducing a category of sheaves on the disk D−(1,1), for which the stalk at 1 is a differential equation, the stalk at q isa q-difference equation if q is not a root of unity, and the stalk at a root of unity ξ is a mixed object, formed by a differential equation and an action of σξ.
This is a study of the asymptotic behaviour of solutions of p-adic linear differential equations near the boundary of their convergence disks. We prove Dwork’s conjecture on the logarithmic growth of solutions in generic versus special disks.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.