In this paper, the bounded properties of oscillatory hyper-Hilbert transformalong certain plane curves   $\gamma \left( t \right)$ ,
 $\gamma \left( t \right)$ ,
   $${{T}_{\alpha ,\beta }}f\left( x,\,y \right)\,=\,\int_{0}^{1}{f\left( x\,-\,t,\,y\,-\,\gamma \left( t \right) \right){{e}^{i{{t}^{-\beta }}}}\frac{\text{d}t}{{{t}^{1}}+\alpha }}$$
 $${{T}_{\alpha ,\beta }}f\left( x,\,y \right)\,=\,\int_{0}^{1}{f\left( x\,-\,t,\,y\,-\,\gamma \left( t \right) \right){{e}^{i{{t}^{-\beta }}}}\frac{\text{d}t}{{{t}^{1}}+\alpha }}$$  
are studied. For general curves, these operators are bounded in   ${{L}^{2}}\left( {{\mathbb{R}}^{2}} \right)$  if
 ${{L}^{2}}\left( {{\mathbb{R}}^{2}} \right)$  if   $\beta \,\ge \,3\alpha $ . Their boundedness in
 $\beta \,\ge \,3\alpha $ . Their boundedness in   ${{L}^{p}}\left( {{\mathbb{R}}^{2}} \right)$  is also obtained, whenever
 ${{L}^{p}}\left( {{\mathbb{R}}^{2}} \right)$  is also obtained, whenever   $\beta \,\ge \,3\alpha $  and
 $\beta \,\ge \,3\alpha $  and   $\frac{2\beta }{2\beta -3\alpha }\,<\,p\,<\,\frac{2\beta }{3\alpha }$ .
 $\frac{2\beta }{2\beta -3\alpha }\,<\,p\,<\,\frac{2\beta }{3\alpha }$ .