Over decades of robotics research, cooperative object transportation has been studied as a meaningful model problem for robotic networks because it possesses a variety of crucial challenges. Although these challenges are demanding, the cooperation of multiple robots has the potential to solve automation problems that are beyond the scope of an individual robot. So far, the model problem has mostly been addressed by explicitly controlling the robots’ positions. However, the position-based approach suffers from some intrinsic detriments, for example, the lack of explicit feedback between robots and object. Moreover, it remains an open question how many robots shall be employed to ensure a successful transportation. This paper’s purpose is to overcome these challenges using a novel force-based approach taking into account the robots’ actual manipulation capabilities, that is, the exerted forces. Using cost-efficient hardware, the interaction forces are measured and, what is more, explicitly controlled by a highly responsive onboard controller. Employing a tailored software architecture, the novel force-based scheme, useful for robotic manipulation beyond the benchmark problem, is probably the most flexible of its kind regarding the number of robots and the object’s shape. The controller’s functionality and performance as well as the scheme’s versatility are demonstrated by several hardware experiments.