We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Presents the basic postulates of quantum mechanics in terms of the density matrix instead of the usual state vector formalism in the case of an isolated system. Extends it to the case of open systems with the help of the reduced density matrix formalism, and to the case of an imperfect state preparation described by a statistical mixture. Introduces the concept of quantum state purity to characterize the degree of mixture of the state, and shows that one can always "purify" a density matrix by going into a Hilbert space of larger dimension.
Quantum mechanics is an extraordinarily successful scientific theory. But more than 100 years after it was first introduced, the interpretation of the theory remains controversial. This Element introduces some of the most puzzling questions at the foundations of quantum mechanics and provides an up-to-date and forward-looking survey of the most prominent ways in which physicists and philosophers of physics have attempted to resolve them. Topics covered include nonlocality, contextuality, the reality of the wavefunction and the measurement problem. The discussion is supplemented with descriptions of some of the most important mathematical results from recent work in quantum foundations, including Bell's theorem, the Kochen-Specker theorem and the PBR theorem.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.