We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\mathcal {N}$ be a non-Archimedean-ordered field extension of the real numbers that is real closed and Cauchy complete in the topology induced by the order, and whose Hahn group is Archimedean. In this paper, we first review the properties of weakly locally uniformly differentiable (WLUD) functions, $k$ times weakly locally uniformly differentiable (WLUD$^{k}$) functions and WLUD$^{\infty }$ functions at a point or on an open subset of $\mathcal {N}$. Then, we show under what conditions a WLUD$^{\infty }$ function at a point $x_0\in \mathcal {N}$ is analytic in an interval around $x_0$, that is, it has a convergent Taylor series at any point in that interval. We generalize the concepts of WLUD$^{k}$ and WLUD$^{\infty }$ to functions from $\mathcal {N}^{n}$ to $\mathcal {N}$, for any $n\in \mathbb {N}$. Then, we formulate conditions under which a WLUD$^{\infty }$ function at a point $\boldsymbol {x_0} \in \mathcal {N}^{n}$ is analytic at that point.
We prove a version of Montel’s theorem for analytic functions over a non-Archimedean complete valued field. We propose a definition of normal family in this context, and give applications of our results to the dynamics of non-Archimedean entire functions.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.