We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
It is accepted treatment to give vasopressin to adults in postcardiotomy shock, but such use in children is controversial. Cardiopulmonary bypass is presumed to attenuate the normal endogenous vasopressin response to shock. We hypothesized that levels of vasopressin in children are altered by bypass, and that children having low endogenous levels perioperatively are more likely to develop hypotension, or require vasopressors.
Methods
Serial levels of vasopressin were assessed prospectively in children undergoing bypass at a single center.
Results
Of 61 eligible patients, we enrolled 39 (63%). Their median age was 5 months. The mean level of vasopressin prior to bypass was 18.6 picograms per millilitre, with an interquartile range from 2.6 to 11.4. Levels of vasopressin peaked during bypass at 87.1, this being highly significant compared to baseline (p < 0.00005), remained high for 12 hours at a mean of 73.5, again significantly different from baseline (p = 0.002), were falling at 24 hours, with a mean of 28.1 (p = 0.04), and had returned to baseline by 48 hours, when the mean was 7.4 (p = 0.3). Age, gender, and the category for surgical risk had no influence on the levels of vasopressin. There was no statistically significant relationship between the measured levels and hypotension or the requirement for vasopressors, although a few persistently hypotensive patients had high levels subsequent to bypass. Higher levels correlated with higher levels of sodium in the serum (rs = 0.37, p < 0.00005), higher osmolality (rs = 0.37, p < 0.00005), and positive fluid balance (rs = 0.23, p < 0.008). Preoperative use of inhibitors of angiotensin converting enzyme, preoperative congestive cardiac failure, and longer periods of bypass predicted higher levels during the first eight postoperative hours.
Conclusions
Children do not have deficient endogenous levels of vasopressin following bypass, and lower levels are not associated with hypotension. Any therapeutic efficacy of infusion of vasopressin for post-cardiotomy shock in children is likely due to reasons other than physiologic replacement.