We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter introduces the definition of network tomography and the three branches of network tomography and provides an overview of the main issues addressed in the subsequent chapters.
Providing the first truly comprehensive overview of Network Tomography - a novel network monitoring approach that makes use of inference techniques to reconstruct the internal network state from external vantage points - this rigorous yet accessible treatment of the fundamental theory and algorithms of network tomography covers the most prominent results demonstrated on real-world data, including identifiability conditions, measurement design algorithms, and network state inference algorithms, alongside practical tools for applying these techniques to real-world network management. It describes the main types of mathematical problems, along with their solutions and properties, and emphasizes the actions that can be taken to improve the accuracy of network tomography. With proofs and derivations introduced in an accessible language for easy understanding, this is an essential resource for professional engineers, academic researchers, and graduate students in network management and network science.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.