We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
When restricted to alternating links, both Heegaard Floer and Khovanov homology concentrate along a single diagonal $\delta$-grading. This leads to the broader class of thin links that one would like to characterize without reference to the invariant in question. We provide a relative version of thinness for tangles and use this to characterize thinness via tangle decompositions along Conway spheres. These results bear a strong resemblance to the L-space gluing theorem for three-manifolds with torus boundary. Our results are based on certain immersed curve invariants for Conway tangles, namely the Heegaard Floer invariant $\operatorname {HFT}$ and the Khovanov invariant $\widetilde {\operatorname {Kh}}$ that were developed by the authors in previous works.
We present an algorithm for calculating the geometric intersection number of two multicurves on the $n$-punctured disk, taking as input their Dynnikov coordinates. The algorithm has complexity $O(m^{2}n^{4})$, where $m$ is the sum of the absolute values of the Dynnikov coordinates of the two multicurves. The main ingredient is an algorithm due to Cumplido for relaxing a multicurve.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.