We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Edited by
Alik Ismail-Zadeh, Karlsruhe Institute of Technology, Germany,Fabio Castelli, Università degli Studi, Florence,Dylan Jones, University of Toronto,Sabrina Sanchez, Max Planck Institute for Solar System Research, Germany
Abstract: Energetic charged particles trapped by the Earth’s magnetic field present a significant hazard for Earth-orbiting satellites and humans in space. Application of the data assimilation tools allows us to reconstruct the global state of the radiation particle environment from sparse single-point observations. The measurements from different satellites with different observational errors can be blended in an optimal way with physics-based models. The mathematical formulation on the diffusion and diffusion-advection equations for the Earth’s Van Allen radiation belts and ring current is described. We further describe several recent studies that successfully applied the data assimilation tools to the near-Earth space radiation environment. The applications to the reanalysis of the radiation belts and ring current, real-time predictions, and analysis of the missing physical processes are described and motivation for these studies is provided. We further discuss various assimilation techniques and potential topics for future research.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.