To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter is concerned with Gibbs’ statistical mechanics. It relies on developing the constraints imposed by Hamiltonian mechanics on the time evolution of a general probability density function in phase space. This is effectively done by using the notion of Hamiltonian flow and material derivative. Combining conservation of probability with Liouville’s theorem of Hamiltonian mechanics gives rise to Liouville’s equation, which is a cornerstone equation of both time-dependent and equilibrium statistical mechanics. From there on, the chapter focuses on equilibrium statistical mechanics and introduces the canonical and microcanonical Gibbs’ ensembles. The chapter takes a step-by-step approach where the main ideas are presented first for one particle in one dimension of space, and then reformulated in more increasingly more complex situations. Important properties such as the partition function acting as a moment generating function are derived and put in practice. Finally, a whole section is dedicated to little know works from Gibbs on statistical mechanics for identical particles. Finally, the grand canonical ensemble is also introduced.
This clear and pedagogical text delivers a concise overview of classical and quantum statistical physics. Essential Statistical Physics shows students how to relate the macroscopic properties of physical systems to their microscopic degrees of freedom, preparing them for graduate courses in areas such as biophysics, condensed matter physics, atomic physics and statistical mechanics. Topics covered include the microcanonical, canonical, and grand canonical ensembles, Liouville's Theorem, Kinetic Theory, non-interacting Fermi and Bose systems and phase transitions, and the Ising model. Detailed steps are given in mathematical derivations, allowing students to quickly develop a deep understanding of statistical techniques. End-of-chapter problems reinforce key concepts and introduce more advanced applications, and appendices provide a detailed review of thermodynamics and related mathematical results. This succinct book offers a fresh and intuitive approach to one of the most challenging topics in the core physics curriculum and provides students with a solid foundation for tackling advanced topics in statistical mechanics.
Statistical ensembles provide a conceptual framework within whichto obtain the average behaviour of physical systems.The extent to which a system interacts with its environment determines the appropriate statistical ensemble with which to describe its properties.Isolated systems are described by the microcanonical ensemble.The expression for the Boltzmann entropy acts as a bridge equation relating the thermodynamic quantity, the entropy, to a statistical mechanical quantity, the multiplicity of microstates.Other forms of entropy, the Gibbs and Shannon entropies, and the relation of entropy to irreversibility are discussed.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.