We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this chapter we discuss the effects of losses on quantum optical systems. We discuss quantum jumps and master equations. We introduce the notion of using fictitious beam splitters to model losses. We introduce the decoherence of pure quantum mechanical states into a statistical mixture.
Appendix G: interaction between a monochromatic field and two-level atom. The problem is treated first in the case of a classical field and a quantum two-level system (semiclassical approach): It is characterised by a rotation of the Bloch vector (Rabi ocillation) and allows us to generate any qubit state by applying a field of well-controlled duration and amplitude. One then includes spontaneous emission to the model, and finally obtains the set of Bloch equations that are used in many different problems of light–matter interaction. One then considers the full quantum case of cavity quantum electrodynamics (CQED), where the field is single mode and fully quantum: this is the Jaynes–Cummings Hamiltonian approach, which is fully solvable when one negelcts spontaneous emission: quantum oscillations and revivals are predicted. Damping is then introduced in the model, and two regimes of strong and weak couplings are predicted in this case.
In this paper, we establish gradient continuity for solutions to
\[ (\partial_t - \operatorname{div}(A(x) \nabla ))^{s} u =f,\quad s \in (1/2, 1), \]
when $f$ belongs to the scaling critical function space $L\left (\frac {n+2}{2s-1}, 1\right )$. Our main results theorems 1.1 and 1.2 can be seen as a nonlocal generalization of a well-known result of Stein in the context of fractional heat type operators and sharpen some of the previous gradient continuity results which deal with $f$ in subcritical spaces. Our proof is based on an appropriate adaptation of compactness arguments, which has its roots in a fundamental work of Caffarelli in [13].
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.