We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter establishes the exponential decay of gamblets under an appropriate notion of distance derived from subspace decompositionin a way that generalizesdomain decomposition in the computation of PDEs.The first stepspresent sufficient conditions forlocalizationbased on a generalization of the Schwarz subspace decomposition and iterative correction methodintroduced by Kornhuber and Yserentantand the LOD method of Malqvist and Peterseim. However,when equipped withnonconforming measurement functions, one cannot directly work in the primal space, but instead one has to find ways to work in the dual space. Therefore, the next steps presentnecessary and sufficient conditions expressed as frame inequalities in dual spaces that, in applications to linear operators on Sobolev spaces,are expressed as Poincaré, inverse Poincaré, and frame inequalities.
This chapter reviews classical homogenizationconcepts such as the cell problem; correctors; compactness by compensation; oscillating test functions; H, G, and Gamma convergence; and periodic and stochastic homogenization. Numerical homogenization is presented as the problem of identifying basis functions that are both as accurate and as localized as possible. Optimal recovery splines constructed from simple measurement functions (Diracs, indicator functions, and local polynomials) provide a simple to solution to this problem: they achieve the Kolmogorov n-width optimal accuracy (up to a constant) and they are exponentially localized. Current numerical homogenization methods are reviewed. Gamblets, the LOD method, the variational multiscale method, andpolyharmonic splines are shown to have a common characterization as optimal recovery splines.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.