To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In 2004, Herzog, Hibi, and Zheng proved that a quadratic monomial ideal has a linear resolution if and only if all its powers have a linear resolution. We study a generalization of this result for square-free monomial ideals arising from facet ideals of a simplicial tree. We give a complete characterization of simplicial trees for which all powers of their facet ideal have a linear resolution. We compute the regularity of t-path ideals of rooted trees. In addition, we study the regularity of powers of t-path ideals of rooted trees. We pose a regularity upper bound conjecture for facet ideals of simplicial trees, which is as follows: if $\Delta $ is a d-dimensional simplicial tree connected in codimension one, then reg$(I(\Delta )^s) \leq (d+1)(s-1)~+$ reg$(I(\Delta ))$ for all $s \geq 1$. We prove this conjecture for some special classes of simplicial trees.
We investigate whether the property of having linear quotients is inherited by ideals generated by multigraded shifts of a Borel ideal and a squarefree Borel ideal. We show that the ideal generated by the first multigraded shifts of a Borel ideal has linear quotients, as do the ideal generated by the $k$th multigraded shifts of a principal Borel ideal and an equigenerated squarefree Borel ideal for each $k$. Furthermore, we show that equigenerated squarefree Borel ideals share the property of being squarefree Borel with the ideals generated by multigraded shifts.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.