We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this chapter we discuss advanced tools and techniques, which rely on additional concepts from algebraic geometry. These tools could be helpful for people who do research work in incidence theory and related topics. A reader who is new to this field might prefer to skip this chapter.
We sometimes wish to consider families of varieties, such as the set of circles in the plane or the set of planes in R^3 that not are incident to the origin. In this chapter, we rigorously define such families. We also generalize the idea of point-line duality to every family of varieties. We then see how these notions could be used to prove various results. In particular, we derive a new incidence bound and prove various properties of surfaces in R^3 and C^3.
Asymptotic expansions of the Gauss hypergeometric function with large parameters, $F(\unicode[STIX]{x1D6FC}+\unicode[STIX]{x1D716}_{1}\unicode[STIX]{x1D70F},\unicode[STIX]{x1D6FD}+\unicode[STIX]{x1D716}_{2}\unicode[STIX]{x1D70F};\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D716}_{3}\unicode[STIX]{x1D70F};z)$ as $|\unicode[STIX]{x1D70F}|\rightarrow \infty$, are known for many special cases, but not for one that the author encountered in recent work on fluid mechanics: $\unicode[STIX]{x1D716}_{2}=0$ and $\unicode[STIX]{x1D716}_{3}=\unicode[STIX]{x1D716}_{1}z$. This paper gives the leading term for that case if $\unicode[STIX]{x1D6FD}$ is not a negative integer and $z$ is not on the branch cut $[1,\infty )$, and it shows how subsequent terms can be found.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.