We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Cable-guiding mechanisms (CGMs) and the stiffness characteristics directly influence the dynamic features of the cable-driven upper limb rehabilitation robot (PCUR), which will affect PCUR’s performance. This paper introduces a novel CGM design. Given the precision and movement stability considerations of the mechanism, an analytical model is developed. Using this model, we analyze the error of the CGM and derive velocity and acceleration mappings from the moving platform to the cables. Continuity of cable trajectory and tension is rigorously demonstrated. Subsequently, a mathematical model for PCUR stiffness is formulated. Utilizing MATLAB/Simscape Multibody, simulation models for the CGM and stiffness characteristics are constructed. The feasibility of the proposed CGM design is validated through simulation and experimentation, while the influence of stiffness characteristics on PCUR motion stability is comprehensively analyzed.
Head and eyebrow movements have been reported as question markers in both spoken (e.g. Swerts & Krahmer, 2004) and sign languages (e.g., Zeshan, 2004). However, the relative weight of these visual cues in conveying prosodic meaning remains unexplored. This study examines, through a kinematic analysis, if (and how) the amplitude of head falling movements varies in statements versus questions, both in Portuguese Sign Language (LGP) and in the spoken modality of European Portuguese. The results show that the head falling movement plays a key role in conveying interrogativity in Portuguese, in varying degrees. In LGP, the head amplitude is larger than in the spoken modality, and the shape of the head movement varies across sentence types, thus showing the primary role of this visual cue in LGP prosodic grammar. In spoken Portuguese, although the head amplitude also differs between sentence types, the shape of the movement over time is always the same (falling), thus pointing to a secondary/complementary role in spoken Portuguese.
These findings not only contribute to the knowledge of the prosodic grammar of spoken and sign languages, but also challenge traditional language processing models, mostly focused on verbal language.
After an introduction to general relativity and supersymmetry, the formalism of supergravity is defined, on-shell, off-shell, and in superspace, using coset theory and local superspace. Higher dimensions, extended susy, and KK reduction are also defined. Then, various applications are described: dualities and solution-generating techniques, solutions and their susy algebra, gravity duals and deformations, supergravity on the string worldsheet and superembeddings, cosmological inflation, no-go theorems and Witten’s positive energy theorem, compactification of low-energy string theory and toward embedding the Standard Model using supergravity, susy breaking and minimal supergravity.
Commonly, quantitative gait analysis post-stroke is performed in fully equipped laboratories housing costly technologies for quantitative evaluation of a patient’s movement capacity. Combining such technologies with an electromyography (EMG)-driven musculoskeletal model can estimate muscle force properties non-invasively, offering clinicians insights into motor impairment mechanisms. However, lab-constrained areas and time-demanding sensor setup and data processing limit the practicality of these technologies in routine clinical care. We presented wearable technology featuring a multi-channel EMG-sensorized garment and an automated muscle localization technique. This allows unsupervised computation of muscle-specific activations, combined with five inertial measurement units (IMUs) for assessing joint kinematics and kinetics during various walking speeds. Finally, the wearable system was combined with a person-specific EMG-driven musculoskeletal model (referred to as human digital twins), enabling the quantitative assessment of movement capacity at a muscle-tendon level. This human digital twin facilitates the estimation of ankle dorsi-plantar flexion torque resulting from individual muscle-tendon forces. Results demonstrate the wearable technology’s capability to extract joint kinematics and kinetics. When combined with EMG signals to drive a musculoskeletal model, it yields reasonable estimates of ankle dorsi-plantar flexion torques (R2 = 0.65 ± 0.21) across different walking speeds for post-stroke individuals. Notably, EMG signals revealing an individual’s control strategy compensate for inaccuracies in IMU-derived kinetics and kinematics when input into a musculoskeletal model. Our proposed wearable technology holds promise for estimating muscle kinetics and resulting joint torque in time-limited and space-constrained environments. It represents a crucial step toward translating human movement biomechanics outside of controlled lab environments for effective motor impairment monitoring.
Continuum robot-based surgical systems are becoming an effective tool for minimally invasive surgery. A flexible, dexterous, and compact robot structure is suitable for carrying out complex surgical operations. In this paper, we propose performance metrics for dexterity based on data density. Data density at a point in the workspace is higher if the number of reachable points is higher, with a unique configuration lying in a small square box around a point. The computation of these metrics is performed with forward kinematics using the Monte Carlo method and, hence, is computationally efficient. The data density at a particular point is a measure of dexterity at that point. In contrast, the dexterity distribution property index is a measure of how well dexterity is distributed across the workspace according to desired criteria. We compare the dexterity distribution property index across the workspace with the dexterity index based on the dexterous solid angle and manipulability-based approach. A comparative study reveals that the proposed method is simple and straightforward because it uses only the position of the reachable point as the input parameter. The method can quantify and compare the performance of different geometric designs of hyper-redundant and multisegment continuum robots based on dexterity.
Infant carrying and more generally load carrying may impact bipedal locomotion and thus the energy cost of the daily activities, in living people but also in our ancestors. In order to improve our knowledge of infant carrying strategies we investigate the biomechanics of infant carrying in a non-mechanised group. The Qashqai are nomadic people who still carry loads and infants habitually without any daily assistance in varied natural environments. Our analysis focuses on the sagittal kinematics using a high-speed camera (joint angles, speed, position of the centre of mass) and kinetics (ground reaction forces and displacement of the centre of mass) using a six-degree of freedom force plate. We assessed the unloaded and loaded (infant) walking of 26 Qashqai women, living in the Fars province (Iran). The results demonstrate that different mechanisms of walking exist that are related to the mode of carrying and the weight of the infant, by which step length, walking speed and the lower limb angles are not affected. The displacement of the total centre of mass remains unchanged. This supports the hypothesis that the Qashqai have developed mechanisms of load carrying that limit the increase in energy consumption. This could be related to the usual high level of daily activity.
An improved Monte-Carlo algorithm is proposed to address the problem of an unclear workspace boundary in a multi-robot coordinated lifting system. The spatial configuration of a multi-robot coordinated lifting system with rolling base is analyzed, and the kinematics and static workspace of the system are established. To solve the workspace boundary, first, the error introduced by the layers is reduced using an intra-layer thinning method. Second, each layer is divided simultaneously based on rows and columns, and the initial boundary points are extracted by searching for the best value. Third, random three-dimensional points are added in the neighborhood, and pseudo-boundary points are removed using three-dimensional local spherical coordinates to achieve a high-precision solution for the workspace boundary. Finally, the workspace volume is used to analyze the influence of structural parameters on the workspace boundary. The results show that the lifting system has limited carrying capacity and a data reference for selecting the structural parameters by analyzing the factors that affect the workspace. Findings provide a basis for further studies on the structural configuration and optimization of the lifting system.
This article presents the development of a robot capable of modifying its size through a wheel reconfiguration strategy. The reconfigurable wheel design is based on a four-bar retractable mechanism that achieves variation of the effective radius of the wheel. A reconfiguration index is introduced based on the number of retractable mechanisms that predicts the radius of configuration according to the number of mechanisms implemented in the wheel. The kinematics of the retractable mechanism is studied to determine the theoretical reconfiguration radius during the transformation process, it is also evaluated numerically with the help of the GeoGebra software, and it is validated experimentally by image analysis using the Tracker software. The transformation process of the robot is investigated through an analysis of forces that consider the wheel in contact with the obstacle, the calculation of the wheel torque and the height of the obstacle to be overcome are presented. On the other hand, the experimental validation of the robot reconfiguration process is presented through the percentage of success shown by the robot to overcome obstacles of 50, 75, 100 and 125 mm. In addition, measurements of energy consumption during the transformation process are reported. Reconfigurable wheels, capable of adapting their size, offer innovative solutions to various challenges across different applications such as robotic exploration and search and rescue missions to industrial settings. Some key issues that these wheels can address include terrain adaptability enhancing a robot’s mobility over uneven surfaces, or obstacles; enhanced robotic design; cost-effective design; space efficiency; and versatility in applications.
In this chapter I discuss the role of motion-tracking technology in the study of gesture, both from a production perspective as well as for understanding how gestures support comprehension. I first give an overview of motion-tracking technologies in order to provide a starting point for researchers currently using or interested in using motion tracking. Next, I discuss how motion tracking has been employed in the past to understand gesture production and comprehension, as well as how it can be utilized for more complex experiments including virtual reality. This is not meant as a comprehensive review of the field of motion tracking, but rather a source of inspiration for how such methodologies can be employed in order to tackle relevant research questions. The chapter is concluded with suggestions for how to build upon previous research, asking new, previously inaccessible questions, and how motion-tracking technology can be used to move toward a more replicable and quantitative study of gesture.
A deployable manipulator has the characteristics of a small installation space and a large workspace, which has great application prospects in small unmanned platforms. Most existing deployable manipulators are designed based on rigid links, whose complexity and mass inevitably increase sharply with increasing numbers of rigid links and joints. Inspired by the remarkable properties of tape springs, this paper proposes novel deployable parallel tape-spring manipulators with low mass, simple mechanics, and a high deployed-to-folded ratio. First, a double C-shaped tape spring is presented to improve the stability of the structure. The combined fixed drive component (CFDC) and combined mobile drive component (CMDC) are designed. Then, novel 2-DOF and 3-DOF deployable translational parallel manipulators are proposed based on the CFDC and CMDC, and their degrees-of-freedom (DOFs), kinematics, and stability are analyzed. The coiled tape spring is regarded as an Archimedean spiral, which can significantly improve the accuracy of kinematic analysis. The correction coefficient of the Euler formula is obtained by comparison with simulation results and experimental results. Furthermore, the stability spaces of the 2-DOF and 3-DOF deployable parallel manipulators are given. Finally, a prototype is fabricated, and experiments are conducted to validate the proposed design and analysis.
Part one gives a description of the characteristics of the wind field over the ocean, including wind shear, turbulence and coherence. It shows how these parameters are modeled and used as an input to wind turbine analyses. The long-term statistics of the mean wind speed are discussed as well as the most common principles for wind speed measurements. In part two, the kinematics and dynamics of ocean waves are given in a form which in subsequent chapters is used in computing wave loads on structures, both in time and frequency domain. Long- and short-term wave statistics are discussed.
Stray light from the sun is one of the most significant factors affecting image quality for the optical system of a spacecraft. This paper proposes a method to design a deployable supporting mechanism for the sunshield based on origami. Firstly, a new type of space mechanism with single-closed loop was proposed according to thick-panel origami, and its mobility was analysed by using the screw theory. In order to design a deployable structure with high controllability, the tetrahedral constraint was introduced to reduce the degree of freedom (DOF), and a corresponding deployable unit named tetrahedral deployable unit (TDU) was obtained. Secondly, the process to constructing a large space deployable mechanism with infinite number of units was explained based on the characteristics of motion and planar mosaic array, and kinematics analysis and folding ratio of supporting mechanism were conducted. A physical prototype was constructed to demonstrate the mobility and deployment of the supporting mechanism. Finally, based on the Lagrange method, a dynamic model of supporting mechanism was established, and the influence of the torsion spring parameters on the deployment process was analysed.
This chapter reviews the current limitations of CASA in routine clinical andrology and describes a path by which it could become a robust analytical technology that can be employed in accredited expert clinical andrology laboratories. Particular focus is on the need for premarketing validation by manufacturers for CASA-based semen analysis applications, as well as the impact that software differences have on the absolute values reported for sperm kinematics. Without close comparability between CASA systems it will continue to be extremely difficult to establish either decision limits or reference ranges that can be applied clinically for either diagnostic or prognostic purposes.
This paper presents a kinematics modeling and hybrid motion planning framework for wheeled-legged rovers. It is a unified solution for wheeled-legged rovers to traverse multiple challenging terrains using hybrid locomotion. A kinematic model is first established to describe the rover’s motions. Then, a hybrid motion planning framework is proposed to determine the rover’s gait patterns and parameterize the legs’ and the body’s trajectories. Furthermore, an optimization algorithm based on B-spline is utilized to minimize the motors’ energy dissipation and generate smooth trajectories. The wheeled and legged hybridization allows the rover for faster locomotion while maintaining high stability. Besides, it also improves the rover’s ability to overcome obstacles. Prototype experiments are carried out in more complex environments to verify the rover’s flexibility and maneuverability to traverse irregular terrains. The proposed algorithm reduces the swing amplitude by 83.3% compared to purely legged locomotion.
A walking robot consisting of double Stewarts parallel legs was designed by our research team in the past time, which was mainly used for the transportation of the wounded after the disaster. In order to promote stability of control locomotion and ensure invariably horizontal state of the robot platform in the process of motion, the central pattern generator (CPG) based on particle swarm optimization (PSO) is presented to optimize the kinematic model. The purpose of optimization is to solve the hysteresis problem of displacement variation among the electric cylinders. Moreover, the dynamic model of the robot is established, which can provide mechanical basis for the feedback of control signal and make the robot move stably. The simulation results show that the displacement hysteresis problem of the electric cylinders is solved well. Meanwhile, compared with simulation results based on GA-CPG method, it is demonstrated that the robot motion planned using PSO-CPG method has better motion stability and can avoid the impact of legs landing during the transition phase of the motion cycle. The experimental results show that the platform on the robot can maintain an invariably horizontal state, and the locomotion is more stable. It verifies the feasibility of PSO-CPG model and the correctness of the dynamic model of the parallel mobile rescue robot.
The most general motion of a rigid body can be described by the combination of the translational motion of its center of mass and the rotational motion of all points of the body about an axis through the center of mass. In this chapter, we apply kinematics, dynamics, and conservation laws to investigate rolling motion, which is a special case of this most general motion. This chapter represents the culmination of all the topics we cover in the first six chapters of this book.
In this paper, a new over-constrained parallel driving mechanism (PDM) with planar sub-closed chains is proposed. First, the number of over-constraints on the PDM is calculated. Then, an analysis is conducted as to the kinematics of the hybrid manipulator, including positions, velocities, and accelerations of all bodies. Furthermore, the Newton–Euler approach is taken to deduce the kinematic formula of each link and the formula of inertial force at the center of mass. However, it remains difficult to solve the equation since the number of equations is smaller than that of unknown variables. To solve this problem, the screw theory is applied in the present study to analyze the cause of over-constraints, with the link’s elastic deformation introduced as the supplement of deformation compatibility equations. Moreover, the actuation forces and constrained forces/moments are calculated simultaneously. Finally, the dynamic model is verified through simulation and experimentation. The proposed modeling approach provides a fundamental basis for the structural optimization and friction force computation of the over-constrained PDM.
A novel couple-constrained parallel wrist with three measuring force flexible fingers is designed for grabbing heavy objects and measuring grabbed forces. Its prototype is developed, its dynamics model is established, and its grabbing forces are measured. First, using the extended formulas of the skew-symmetric matrix, the kinematic formulas are derived for solving the Jacobian/Hessian matrices and the general velocity/acceleration of the moving links in the couple-constrained parallel wrist. Second, a dynamics model is established for solving the dynamic actuation forces, the couple-constrained forces, and the torque in the couple-constrained parallel wrist. Third, the theoretical solutions of the kinematics/dynamics of the couple-constrained parallel wrist are verified using a simulation mechanism. Finally, the grabbing forces of the three flexible fingers are measured and analyzed.
Bending and elongation have been some of the most studied motions in soft actuators due to the variety of their applications. For that matter, multi-DOF actuators have been developed with the purpose to generate different movements in a single actuator, mainly bending.
However, these actuators are still limited in mobility range, and some of them do not perform continuous curvatures. This paper presents the design, characterisation and implementations of a multi-DOF soft pneumatic module. The internal structure of the proposed module is composed of four channels, which generate bending in several directions. The finite element method analysis demonstrates that the actuator performs continuous curvatures for different pressure values. We present a repeatable and easy manufacturing process using the casting technique, considering the material Ecoflex 00-50; as well as the kinematic model of the actuator, taking into consideration two bending Degrees of Freedom (DOFs). Furthermore, we performed bending characterisation for all possible combinations of the four channels via computer vision, demonstrating a wide mobility range and performing continuous curvatures. Additionally, we evaluated the kinematic model with characterisation data, obtaining the angular and cartesian relationship between the pressure and continuous curvatures. On the other hand, the authors propose the design of a modular soft manipulator based on two multi-DOF modules. The kinematic model is reported. In addition, we implement a motion sequence in the manipulator to pick and place tasks.
Craniovertebral junction (CVJ) is one of the more complex parts of the spinal column. It provides mobility to the cranium and houses the spinal cord. In a healthy subject, the CVJ contributes 25% of the flexion–extension motion and 50% of the axial rotation of the neck. This work reports instrumentation development and results for evaluating implant performance in the stabilized CVJ after surgical procedures. Typically, some bony parts of the vertebrae causing compression to the spinal cord are removed and subsequently stabilized by the instrumenting implant in the CVJ. Pose estimation of the Cadaveric CVJ region is estimated using a monocular vision-based setup. The cervical spine’s first three vertebrae surround the CVJ area, where most cervical spine mobility originates. We aim to evaluate the performance of vision-based intervertebral motion estimation of the Cadaver’s CVJ in the Indian population, particularly in older people. A series of tests were performed on the Cadaver’s CVJ to evaluate the vision system-based motion estimation performance.