We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Many philosophers are aware of the paradoxes of set theory (e.g. Russell's paradox). For many people, these were solved by the iterative conception of set which holds that sets are formed in stages by collecting sets available at previous stages. This Element will examine possibilities for articulating this solution. In particular, the author argues that there are different kinds of iterative conception, and it's open which of them (if any) is the best. Along the way, the author hopes to make some of the underlying mathematical and philosophical ideas behind tricky bits of the philosophy of set theory clear for philosophers more widely and make their relationships to some other questions in philosophy perspicuous.
The main purpose of the chapter is to defend the iterative conception against three objections. The first objection, the missing explanation objection, is that if the iterative conception is correct, one cannot explain the intuitive appeal of the Naïve Comprehension Schema. The chapter provides plausible explanations of this fact which are compatible with the correctness of the conception. The second objection, the circularity objection, is that the iterative conception presupposes the notion of an ordinal, and since ordinals are treated in set theory like certain kinds of sets, this means that the conception is vitiated by circularity. The chapter shows that this objection can be defeated by constructing ordinals using a trick that goes back to Tarski and Scott or dispensing with the notion of well-ordering altogether in the formulation of the conception. The third objection, the no semantics objection, is that the iterative conception prevents us from giving a semantics for set theory. The chapter defends the approach that this problem can be overcome by doing semantics in a higher-order language. The chapter concludes by discussing the status of the Axiom of Replacement on the iterative conception.
This chapter offers some concluding remarks. It provides an overview of some of the central features of the conceptions of set encountered in the book. It then discusses to what extent the findings of the book are compatible with some form of pluralism about conceptions.
The chapter introduces the iterative conception, according to which every set appears at one level or another of the mathematical structure known as the cumulative hierarchy, as well as theories based on the conception. The chapter presents various accounts of the iterative conception: the constructivist account, the dependency account and my own minimalist account. It is argued that the minimalist account is to be preferred to the others. A method – which I call inference to the best conception – is then described to defend the correctness of the iterative conception so understood. This method requires one to show that the iterative conception fares better than other conceptions with respect to a number of desiderata on conceptions of set. This provides additional motivation for exploring alternative conceptions of set in the remainder of the book.
Sets are central to mathematics and its foundations, but what are they? In this book Luca Incurvati provides a detailed examination of all the major conceptions of set and discusses their virtues and shortcomings, as well as introducing the fundamentals of the alternative set theories with which these conceptions are associated. He shows that the conceptual landscape includes not only the naïve and iterative conceptions but also the limitation of size conception, the definite conception, the stratified conception and the graph conception. In addition, he presents a novel, minimalist account of the iterative conception which does not require the existence of a relation of metaphysical dependence between a set and its members. His book will be of interest to researchers and advanced students in logic and the philosophy of mathematics.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.