We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The aim of this work was to compare gas exchanges from leaf to whole plant scales, in two Ethiopian accessions (‘E083’ and ‘E027’), and two bred cultivars (Iapar 59 and Catuaí 99) of Arabica coffee (Coffea arabica L.) cultivated under irrigated and rainfed conditions. Variations in gas exchanges were evaluated over four phenophases (leaf expansion – BE1 and BE2, and berry harvesting – BH1 and BH2), covering the first two production years in the coffee life cycle. We addressed the following questions: Are gas exchanges modified by water availability at leaf and/or plant scales? Do bred cultivars and wild accessions differ in their physiological responses to water availability and phenophases? Photosynthesis (A), stomatal conductance (gs), and transpiration (E) were measured on the recently fully expanded leaves at the upper canopy stratum. The functional-structural plant modelling (FSPM) was used to integrate A at whole plant photosynthesis (A”p), based on 3D virtual trees constructed under VPlants modelling platform. Despite high A values of ‘E083’ overall phenophases, a strong decline in A”p under rainfed condition was observed due to lower plant leaf area as compared to irrigated condition. Catuaí 99 and ‘E083’ were more sensitive to drought than Iapar 59 and ‘E027’, considering photosynthesis at leaf and plant scales. At the last BH2 phenophase, A, gs, E, and carboxylation efficiency were similar between irrigated and rainfed conditions for all genotypes, suggesting some acclimation of leaf gas exchange to the environment. However, A”p benefited by water management in all phenophases as plant leaf area increased. These findings revealed the need to develop methodologies for structural and functional analyses at plant scale, an important step towards the realistic responses of plants and orchards to the surrounding environment.
Molybdenum (Mo) is an essential micronutrient for plants. However, Mo status in Sri Lankan paddy fields as affected by climate and soil is not known. This study was conducted to (i) determine the distribution of exchangeable Mo concentration, and (ii) examine the interactive effects of the agro-climatic zone (ACZ), soil order, water source, and their interactions in determining exchangeable Mo concentration in lowland paddy fields of Sri Lanka. A total of 3,719 soil samples representing six ACZs, six soil orders, and three water sources were collected using a stratified random sampling approach. Exchangeable Mo concentration was determined after extracting in 0.01 M CaCl2 solution and detected using inductively coupled plasma-mass spectrometry. Soil Mo concentration varied in the range of 0.01 to 245 µg kg−1 with a mean of 25.9 µg kg−1. Samples collected from the Wet zone, particularly Wet zone Low country, had higher Mo concentrations than those reported in other ACZs. Among the soil orders tested, Histosols had a higher Mo concentration while that in other soil orders was similar. Rainfed paddy fields had more Mo than supplementary irrigated paddy fields. Spatial maps were generated to visualise the geographical variation in soil Mo concentration. Due to the presence of a spatial heterogeneity of exchangeable Mo concentration, it is important to implement ACZ, soil, and water source-based strategies to improve Mo status in Sri Lankan paddy fields.
This chapter addresses the study of the technology in use in the Iberian Peninsula during the five final centuries of the Middle Ages, with special emphasis on the Christian kingdoms but not forgetting al-Andalus. First, agricultural techniques are considered, especially concerning irrigation agriculture. This is followed by the examination of other production sectors, including the sources of energy and the most significant technological innovations, as well as their routes of dissemination and social transference. The chapter ends with the exploration of both fluvial and maritime navigation techniques used in freight transport and the conclusions, which summarize some of the most relevant technological features of this period.
Increasing use of irrigation in India has exacerbated the problems of soil salinity and sodicity. The present study was undertaken on shrink-swell soils from Maharastra State to determine if changes in soil chemistry due to irrigation have affected the clay mineralogy. Twenty six samples (15 locations) of irrigation-induced, saline-sodic, shrink-swell soils and 27 samples (22 locations) of normal un-irrigated (rain-fed) shrink-swell soils were studied using X-ray powder diffraction (XRPD), infrared spectroscopy (FTIR), and scanning and transmission electron microscopy (SEM, TEM). The XRPD analysis of the <0.2 µm fraction of rain-fed, shrink-swell soils indicates a predominance of dioctahedral smectite with minor to trace amounts of kaolinite and chlorite. Traces of palygorskite (1–4%) were detected in three samples. In contrast, palygorskite is a common component (1–20%) of the fine-clay fraction of saline-sodic soils. Quantitative analysis of palygorskite by XRPD in whole-soil (<2 mm) samples showed that saline-sodic soils contain up to 20 wt.% of palygorskite, whereas palygorskite was only detectable (1.5 wt.%) in one sample of the rain-fed set. The SEM, TEM, and FTIR confirm the presence of Fe-rich palygorskite in saline-sodic soils and demonstrate that the fibrous palygorskite crystals are exceedingly small (∼0.5 µm long). Delicate palygorskite fibers radiate from the margins of smectite plates suggestive of a pedogenic origin and a close genetic relationship between smectite and palygorskite. The compositions of saturation-paste extracts display a shift from the stability field of smectite in rain-fed soils to that of palygorskite in saline-sodic soils. Thus the occurrence and formation of palygorskite appears to be related to the change in land management from rain-fed to irrigated agriculture. This change has occurred over a period of no more than 40–50 y, implying that palygorskite formation in the irrigated, saline-sodic soils has been an extremely rapid process.
The loss of K-bearing clay minerals has been observed over an 80 y cultivation period in Chinese rice paddies despite the use of NKP fertilizers. Clay mineral determinations were made in flood-irrigated paddies cultivated for 3, 10, 15, 30 and 80 y in clayey (45 wt.%), red soils derived from red Quaternary sediments. Three clay minerals are initially present in these soils: illite-mica, magnesian chlorite and an interstratified mica-aluminous chlorite mineral. This last phase was identified using computer simulations. The K-bearing phases (discrete mica and illite as well as interstratified mica layers) are to a large extent lost while the Fe content decreases in the soil as a whole and increases in the chlorite. The mica component in the mixed-layer mineral decreases also. These changes in clay mineralogy and relative abundance suggest a loss of potassic minerals and an increase in the formation of less siliceous, more ferro-magnesian chlorite. These changes occur over 30 y or less, a rather rapid, irreversible transformation of soil clay minerals. Such loss of potassic minerals renders the cultivation more dependent on fertilizer amendment.
Water is essential for (human) life, as necessity and threat. With industrialization, water use has grown exponentially, notably in agriculture (irrigation). Withdrawal from open water and groundwater constitutes blue water use. Water in soils and vegetation is called green water; grey water refers to waste water flows. The complex stocks and flows of water can be related to human activity in the water footprint. Blue water use of surface and groundwater and its availability vary greatly across the globe. Many people live in water-stressed regions, due to groundwater depletion, little and/or irregular rain and declining quality due to pollution. Water is a prime example of a common pool resource (CPR), but increasing demand and subsequent scarcity have led to marketization and privatization of water provision and infrastructure.Because water use is intrinsically regional, water modelling and governance should be context-specific and participatory. The path to sustainable water use will have to address the divergent views on water as private or public good, and on ways to connect water engineering (including for hydropower) to practices less damaging for biodiversity (nature-based solutions).
Across the Pacific, agricultural systems have used two main complementary cultivation regimes: irrigated farming of wet environments and rain-fed cropping of drylands. These strategies have different productive potential and labour needs, which has structured their temporal and spatial distributions. Although these approaches have been studied a great deal at a general level, there has been less work on the local use and significance of these strategies. Here, the authors evaluate ideal distribution models of agricultural activities in the Punalu‘u valley on O‘ahu, Hawai‘i, to assess how habitat suitability changed as a result of infrastructural investment and dynamic environmental, social and demographic change. The results are of relevance for contemporary initiatives to revive Indigenous agricultural systems in Hawai‘i and beyond.
Droughts are a major global natural hazard, creating negative environmental and socio-economic impacts across a broad spectrum of sectors. However, agriculture is often the first sector to be impacted due to prolonged rainfall shortages reducing available soil moisture reserves with negative consequences for both rainfed and irrigated food crop production and for livestock. In the UK, recent droughts in 2018 and 2022 have highlighted the vulnerability of the agricultural and horticultural sectors since most production is rainfed and entirely dependent on the capricious nature of summer rainfall. Surprisingly, despite recognition of the agronomic and economic risks, there remains a paucity of evidence on the multi-scalar impacts of drought, including the impacts on crop yields and quality, the financial implications for farming and the consequences for fresh produce supply chains. Drawing on published grey and science literature, this review provides a comprehensive synthesis of drought impacts on U.K. agriculture, including characterisation of the sensitivity of the main sub-sectors to different types of drought, a critique of the short-term coping responses and longer-term strategies and identification of the main knowledge gaps which need to be addressed through a concerted effort of research and development to inform future policies focussing on climate change risk assessment for agriculture. Although the review focuses predominantly on U.K. evidence, the insights and findings are relevant to understanding drought impacts and risk management strategies in other temperate and humid regions where agriculture is a fundamentally important component of the economy.
The Canary Islands are a Spanish archipelago, where the greatest water demand comes from agriculture. Being an outermost European region that receives a large number of tourists per year, the need for greater food sovereignty becomes more important. It is vital to undertake studies on the water footprint (WF) of the main crops, in order to identify the irrigation practices of local farmers and establish recommendations for water saving through improvement of these practices. The results of this study show that the average WF for bananas in the Canary Islands is 340.80 m3 t−1 ± 34.07 and for avocadoes is 1741.94 m3 t−1 ± 286.16. The WF models proposed can explain 92 and 86% of the total variance of the WF for banana and avocado crops, respectively. The WF of both crops can be reduced, and this work can be a starting point for improvement. Farmers will face a change in temperature and water availability due to climate change; useful water saving strategies for local farmers can now be made based on estimation of the WF with yield and net needs data.
Mesopotamia is often regarded the “cradle of civilization.” The development of water management practices in the region is thought to have played a key role in the emergence of these early civilizations. We present the first direct dating of a palaeo-canal system at the ancient city of Girsu, Mesopotamia (modern Iraq) (occupied between 4800 and 1600 BC). We describe the use of archaeological and radiocarbon (14C) dating techniques to establish the age of this canal system. Our results show considerable differences between shell 14C dates on the one hand and charcoal 14C dates and archaeological evidence on the other. This likely reflects the impact of freshwater reservoir effects from the Tigris and Euphrates Rivers. Although the FRE from rivers is widely acknowledged, its impact on 14C dates in Mesopotamia is rarely discussed and poorly understood. Our results provide a first indication of its variability and magnitude. With the publication of our results we aim to highlight the problem and re-initiate collaborative research efforts in improving 14C dating in this important region.
We develop a theoretical framework and present a corresponding empirical analysis of the Food and Drug Administration’s irrigation water quality regulatory standard under the Food Safety Modernization Act using lettuce as a case study. We develop a stochastic price endogenous partial equilibrium model with recourse to examine the standard’s efficacy under various scenarios of foodborne illness severity, standard implementation, demand response to foodborne outbreaks, and irrigation costs. The stringency of regulation is evaluated with endogenous producer response to regulatory requirements and corresponding implications for economic surplus. The baseline results show that in the case of the lettuce market, the proposed microbial irrigation water quality regulation in the Food Safety Modernization Act (FSMA) is not cost effective relative to the existing Leafy-Greens Marketing Agreements relying on water treatment for mitigation of microbial contamination. However, FSMA can be cost effective if water treatment is sufficiently expensive.
The current study aimed to investigate biofortification of maize grown under different irrigation intervals, i.e. 15, 20 and 25 days (hereinafter referred to as IR15, IR20 and IR25, respectively), using foliar application treatments (silicon (Si), zinc (Zn), silver nanoparticles (AgNPs), Si + Zn, Si + AgNPs, Zn + AgNPs and Si + Zn + AgNPs) in two growing seasons, 2020 and 2021. A split-plot design with four replications was used, where irrigation intervals and foliar treatments were assigned in main plots and subplots, respectively. IR15 received a total of 7925 m3/ha irrigation water divided over seven irrigations, while IR20 received 5690 m3/ha divided over five irrigations and IR25 received 4564 m3/ha divided over four irrigations. The highest yield and grain quality were observed in plants irrigated at 15-day intervals. Spraying the canopy with Si, Zn and AgNPs, either individually or in combination, reduced the negative impact of water stress caused by longer irrigation intervals on plant growth, yield, yield components and grain protein content. In IR15 + AgNPs + Zn, most of the studied parameters, except for proline content, showed a high positive impact, especially on 100-kernel weight (KW). In contrast, IR25 + Si + AgNPs + Zn showed the highest positive effects on proline and protein contents but a negative impact on the harvest index. Collectively, IR15 + Si + AgNPs + Zn resulted in the highest values of all studied parameters, followed by IR15 + Si + AgNPs and IR15 + Si + Zn. In conclusion, our results suggest that an irrigation interval of 15 days combined with application of Si, Zn and AgNPs has the potential to improve yield and quality of maize under water deficit stress.
This article examines the problem of flooding in colonial Tonkin through two interrelated lenses: the history of disasters as social and political phenomena, and the history of technology and the constraints that shape its use. With a gradient ten times steeper than the Mekong, the Red River (Sông Cái in Vietnamese) is notorious for its huge seasonal fluctuations and violent floods. For centuries, local rulers and cultivators constructed dikes to protect fields and settlements, though breaches and inundations were frequent. French administrators were convinced that they could improve the flooding situation with modern know-how. From the 1890s, colonial engineers carefully studied the river's behavior, examined a range of different schemes to control it, and debated the extent to which the straitjacketing of the river might gradually exacerbate flood risk. Despite their deep-seated misgivings about the problems caused by dikes, they were ultimately forced to work within the parameters of pre-colonial hydraulic works. The result was an intensification of existing dependencies and flood vulnerabilities, which finally came to a head under the combined pressures of extreme weather and war, and which ultimately played an important role in undermining colonial authority in the Red River delta.
This article describes how Taiwanese farmers adopted irrigation pumps to enhance their livelihoods under the shifting relationship of sugar and rice production in late colonial Taiwan. I argue that farmers utilized commercial technologies to make a living and prosper within the established order of Japanese colonial rule. With allocated procurement districts granting exclusive purchasing rights over sugarcane, sugar companies maintained substantial influence over sugarcane cultivation. However, with the proliferation of Penglai rice and new agricultural implements, the situation of the farmers changed substantially. Serious problems in the sugar industry due to economic depression and the rising price of rice in the 1930s led farmers to shift from sugarcane to rice cultivation by introducing a variety of pumps. Those with the means installed new motor pumps, while others independently constructed wind pumps by combining newly introduced parts with older techniques. Despite a prohibition by the colonial government, farmers continued installing pumps until the government established a planned economy in preparation for war. Moreover, distribution of pump capacity through both sales and sharing shows that Taiwanese farmers sought to maintain an informal yet significant cohesion throughout the process of agricultural commercialization. By focusing on the social dynamics surrounding agricultural technologies, this article challenges simplistic portrayals of technology transfer from Japan to the colonies.
Cole crops including broccoli and collard contribute more than $119 million to Georgia’s farm gate value yearly. To ensure maximum profitability, these crops must be planted into weed-free fields. Glyphosate is a tool often used to help achieve this goal because of its broad-spectrum activity on weeds coupled with the knowledge that it poses no threat to the succeeding crop when used as directed. However, recent research suggests that with certain soil textures and production systems, the residual soil activity of glyphosate may damage some crops. Therefore, field experiments were conducted in fall 2019 and 2020 to evaluate transplanted broccoli and collard response to glyphosate applied preplant onto bare soil and what practical mitigation measures could be implemented to reduce crop injury. Herbicide treatments consisted oGf 0, 2.5, or 5 kg ae ha−1 glyphosate applied preplant followed by 1) no mitigation measure, 2) tillage, 3) irrigation, or 4) tillage and irrigation prior to transplanting broccoli and collard by hand. When no mitigation was implemented, the residual activity of glyphosate at 2.5 and 5.0 kg ae ha−1 resulted in 43% to 71% and 79% to 93% injury to broccoli and collard transplants, respectively. This resulted in a 35% to 50% reduction in broccoli marketable head weights and 63% to 71% reduction in collard leaf weights. Irrigation reduced visible damage by 28% to 48%, whereas tillage reduced injury by 43% to 76%, for both crops. Irrigation alleviated yield losses for broccoli but only tillage eliminated yield loss for both crops. Care must be taken when transplanting broccoli and collard into a field recently treated with glyphosate at rates ≥2.5 kg ae ha−1. Its residual activity can damage transplants with injury levels influenced by glyphosate rate, and tillage or irrigation after application and prior to planting.
This article uses historical-ecological insights for a re-reading of two little-known mid-twentieth-century Australian plays, Oriel Gray’s The Torrents and Eunice Hanger’s Flood, which highlight developments relevant to the environmental disasters of today. In particular, the article focuses on the significance of key cultural assumptions embedded in the texts – and a revival of The Torrents in 2019 – including those to do with land use in a period of accelerating development. This approach offers new insights into the dominance of mining, irrigation, and dam-building activities within the Australian ethos, landscape, and economy. One of these insights is the framing of development as progressive. The article thus also examines how development projected as progressive takes place amid the continuing denial of prior occupation of the land by First Nations peoples and of knowledge systems developed over thousands of years. The intersectional settler-colonialist-ecocritical approach here seeks to capture the compounding ecosystem that is modern Australian theatre and its critique. The intention is not to apply revisionist critiques of 1950s plays but to explore the historical relationship between humans, colonialism, and the physical environment over time. Denise Varney is Professor of Theatre Studies in the School of Culture and Communication at the University of Melbourne. Her research is in modern and contemporary theatre and performance, with published work in the areas of ecocriticism, feminism, and Australian theatre. Her most recent book is Patrick White’s Theatre: Australian Modernism on Stage 1960–2018 (Sydney University Press, 2021).
Chapter 1 of Earthopolis: A Biography of Our Urban Planet elaborates on both the myth of Inanna’s chaotic riverboat journey to Uruk and the vision of the goddess’s ordered urban state depicted on the Warka Vase to meditate on the many birthplaces and birthdates of cities and their surrounding “urban worlds.” It identifies river valleys (and other Sun and Earth-delivered sources of fresh water) as crucial to our ability to harvest enough energy from the Sun and Earth to build cities and it discusses the importance of “energized crowds” that arise in large, proximate, specialized, diverse, and anonymous settlements. Ultimately, though, the chapter argues that urban political communities and the especially powerful institutions of state required to govern them best account for cities' ultimate indefinability: their sheer variability and the sheer unpredictability of their human uses, ranging from immense acts of creation to immense acts of destruction. Cities, it concludes, are places where we harvest enough energy from the Sun and Earth, through water, to engage in the ambitious and dangerous human-directed practice of city-enabled politics – the polis of Earthopolis, the only Urban Planet we know of.
The Sultanate's political economy evolved continuously. Since the regime presided over an imperial union of territories that differed in their topography and ecology, the process of evolution in these regions exhibited contrasting patterns of change. Agriculture in the Nile Valley manifested procedures unlike crop raising or animal husbandry along the Syrian coast, upland valleys or semi-arid outback of the Syrian Sahel. Commodities imported from South or East Asia transited from ports in Yemen or Western Arabia through entrepôts on the Upper Nile to Alexandria, where they were transferred to European carriers that conveyed them to destinations on the Mediterranean north shore and beyond. Agents in each of these stages answered to differing sponsors, aligned their conduct of business with local politics and extracted revenues at levels fluctuating within the mechanisms that governed inter-regional trade throughout this period. Domestic commerce in both urban and rural settings dealt in the exchange of commodities produced locally in a workshop milieu. Control over (and profiteering from) marketing of lucrative staples that funneled revenues to the regime, such as spices, textiles or sugar, became a principal objective of governmental authority, with results that enhanced the Sultanate’s fisc in the short term but compromised its competitive position in the longue durée. These issues are considered from the perspective of agriculture or animal husbandry in Egypt and Syria, the varying extent of control exercised over them by the bureaucracy, interregional trade and its manipulation by the Sultanate over time, the domestic commercial economy, and finally the overt expropriation or clandestine extraction on which the regime relied as licit sources of revenuediminished in the Sultanate’s final century.
Research has proliferated on several topics that have invited new methodological approaches: the rural setting, gendered relations between men and women, communal status of minorities (Christians and Jews), and religious diversity among Muslims, in particular among those who identified as Sufi mystics. New sources and revisionist interpretations of them continue to transform the field of Mamluk Studies. Yet in many instances, findings on these subjects are confined to discoveries of information on discrete conditions or isolated events that do not lend themselves to comprehensive analysis. They often depend on a single source or fragmentary data set, and require imaginative speculation to formulate hypotheses that apply to questions about their broader contexts in society. The chapter will outline the state of research on these subjects and their potential to open new lines of inquiry by highlighting examples that have influenced revisionist interpretations.
In this study, we analyze extensive segmented and standardized agricultural fields in the marginally productive terrain of the Pampa de Guereque in the Jequetepeque Valley on the north coast of Peru. Although portions of the associated canal system were constructed continuously from late Formative to Chimú times, the segmented fields date to the late Chimú–Inka period and were only partially finished, apparently never fully used, and ultimately abandoned. We provide description of field plots and irrigation canals and discuss the implications of state-level construction and labor management of the fields, as well as the probable reasons for their abandonment.