We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate the impact of relativistic SZ corrections on Planck measurements of massive galaxy clusters, finding that they have a significant impact at the $\approx$5–15% and up to $\approx$ 3$\sigma$ level. We investigate the possibility of constraining temperature directly from these SZ measurements but find that only weak constraints are possible for the most significant detections; for most clusters, an external temperature measurement is required to correctly measure integrated Compton-y. We also investigate the impact of profile shape assumptions and find that these have a small but non-negligible impact on measured Compton-y, at the $\approx$ 5% level. Informed by the results of these investigations, we recalibrate the Planck SZ observable-mass scaling relation, using the updated NPIPE data release and a larger sample of X-ray mass estimates. Along with the expected change in the high-mass end of the scaling relation, which does not impact Planck mass estimation, we also find hints of a low-mass deviation, but this requires better understanding of the selection function in order to confirm.
Interstellar travel in the Milky Way is commonly thought to be a long and dangerous enterprise, but are all galaxies so hazardous? I introduce the concept of galactic traversability to address this question. Stellar populations are one factor in traversability, with higher stellar densities and velocity dispersions aiding rapid spread across a galaxy. The interstellar medium (ISM) is another factor, as gas, dust grains and cosmic rays all pose hazards to starfarers. I review the current understanding of these components in different types of galaxies, and conclude that red quiescent galaxies without star formation have favourable traversability. Compact elliptical galaxies and globular clusters could be ‘super-traversable’, because stars are packed tightly together and there are minimal ISM hazards. Overall, if the ISM is the major hindrance to interstellar travel, galactic traversability increases with cosmic time as gas fractions and star formation decline. Traversability is a consideration in extragalactic surveys for the Search for Extraterrestrial Intelligence (SETI).
The circumgalactic medium (CGM) is the gas that lies outside the main stellar distribution of a galaxy, but inside its virial radius. The first part of our own galaxy’s CGM to be discovered was a population of high-velocity clouds, discovered through the 21 cm emission of their neutral hydrogen. The high-velocity clouds, however, are embedded within hotter components of the CGM, with temperatures ranging from 104 K to 106 K. These hotter components can be detected through absorption and emission lines of ionized metals such as oxygen. The intracluster medium (ICM) is the gas that lies inside the virial radius of a cluster of galaxies, but which is not associated with any individual galaxy. The ICM can be detected and studied through its free--free emission, which indicates temperatures as high as 108 K.
The role of turbulence in astrophysical environments and its interplay with magnetic fields is still highly debated. In this lecture, we will discuss this issue in the framework of dynamo processes. We will first present a very brief summary of turbulent dynamo theories, then will focus on small scale turbulent dynamos and their particular relevance on the origin and maintenance of magnetic fields in the intra-cluster media (ICM) of galaxies. In these environments, the very low density of the flow requires a collisionless-MHD treatment. We will show the implications of this approach in the turbulent amplification of the magnetic fields in these environments. To finalize, we will also briefly address the connection between MHD turbulence and fast magnetic reconnection and its possible implications in the diffusion of magnetic flux in the dynamo process.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.